Abstract

Bayesian inference is the gold standard procedure for performing a co-
herent data analysis under uncertainty. Good decision making under
uncertainty requires writing elaborate probabilistic models to model and
simulate the systems we find around us. The hope is to obtain calibrated
probabilistic predictions on unseen data points. The challenge being, that
inference for these models is intractable in general. This necessitates ap-
plication of approximate inference techniques which can perform fast and
accurate inference on probabilistic models. The success of Bayesian methods
and any application which builds on it, depend to a large extent on the
success of approximate inference algorithm chosen by the user. Variational
inference has emerged as a popular approximate inference algorithm. It
can be seen as an optimization problem where the task is to find an optimal
distribution as an approximation to the true intractable posterior. This
optimization requires computing fast and unbiased gradients. The contri-
butions of this thesis can be broadly bifurcated into two themes. The first
part is application of variational inference to the task of fitting a Gaussian
process model where we have access to batches of observations, which do not
have a numerical value, but are available as rankings in a set. Interestingly,
the approximation of softmax link function for multi-class Gaussian Process
classification can also be seen as a pairwise comparison of classes taken
two at a time. This viewpoint helps in deriving a similar variational infer-
ence algorithm for scaling Gaussian Process classification to settings where
the number of classes and data points is very large compared to existing
algorithms. The second part of thesis deals with automated variational
inference as a general tool of inference for probabilistic programs in context
of modern programming frameworks which use automatic differentiation
to compute gradients. The recent innovations in automatic differentia-
tion software and algorithmic improvements in the form of computation of
noisy unbiased gradients with Monte Carlo and mini-batching has made
it possible to use model agnostic and standardized automated stochastic
optimization based algorithms and scale it to large datasets. This thesis
brings the stochastic optimization algorithm and the various algorithm
choices like choice of divergence objective and approximating family under
a scanner. In settings where accurate posterior inference is important, this
work shows some potential pitfalls of current practices which may lead to
incorrect conclusions. This work provides a wide set of diagnostic tools
to evaluate if the stochastic optimization has worked well enough and the
obtained solution is accurate enough to be used as approximation to the
true posterior. This work concludes by providing a set of recommendations
to the end user which is- either to use a more expressive approximating
distribution or to reparameterize the model itself to hopefully end up with
an easier posterior distribution.
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1. Introduction

There are many ways of learning functions from data, one particularly
elegant way to do it is by ’probabilistic modelling’. Concepts such as noise
in data and uncertainty hold the key in probabilistic modelling. In most
situations, we can not claim to have perfect knowledge of the systems
we find around us. Even if we do, the interactions among the physical
variables could be so complex that not all factors can be taken into account.
Consider a toy problem of estimating the distance a car travels when
brakes are applied. This problem can be solved using the laws of physics
given we know perfectly the initial speed of car, friction coefficient of the
road, condition of tyres etc., but this information is generally not available
and would vary from place to place. Another way to solve this problem can
be using a data driven approach. By collecting noisy data from experiments
with a set of different tyre and road conditions, the function between initial
speed and distance travelled can be modelled. The measurements made
from sensors and used in the data analysis can be expected to be noisy.
Uncertainty is usually classified into two categories, aleatoric and epis-
temic. There are many possible sources of aleatoric uncertainty. It arises
due to inherent random variability between the members of a population
which we sample from like a shuffled pack of cards or a bag of poker chips.
The data used to train the models can be seen as a realization of a random
process. It also comes in because of random error in measurements. In
contrast, epistemic uncertainty is due to factors one could in principle know
but does not in practice and can be explained away with more training
data. For example, there maybe many possible ways of fitting a function to
given data.
It has been argued that reasoning with the help of probability rules is the
only coherent way to perform inference from data under uncertainty [Cox,
, , 1. This work considers data analysis through a prob-
abilistic view point and using concepts from Bayesian probability theory.
Bayesian inference allows to determine a distribution over underlying
model parameter values after observing data, which is known as the poste-
rior distribution. The other way, ’deterministic modelling’ offers no clear
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Introduction

and coherent way of incorporating the notion of uncertainty into analy-
sis. Many Deep Learning models can be seen as deterministic functions
where the user gets point estimates of underlying model parameters and
predictions. Unfortunately, in practice obtaining posteriors is generally
unfeasible because of intractibility. Then a user has to resort to approxi-
mate inference. One particular approximate inference scheme is known as
variational inference and it will be the focus of this thesis. Recently there
has been a plethora of work where variational inference has been used to
compute approximations to intractable posteriors of elaborate models.

More robust and reliable inference makes data analysis for decision-
making by scientists and organizations (e.g., corporations, governments,
and foundations) more reliable and reproducible. In next section, we
describe the general setting and key objects in Bayesian methods which
sets up the background for introduction of approximate inference and
variational inference in detail.

1.1 A case for Bayesian methods

Many machine learning and deep learning methods reduce inference to an
optimization problem, which is to determine the optimal value of parame-
ters (or weights) which minimise a loss function such as the mean squared
error for a regression problem or cross entropy for classification. These
approaches do not take uncertainty into account. Bayesian methods allow
us to express the uncertainty described above in the form of distributions
over both parameters and predictions. The key aspect defining Bayesian
methods is marginalisation which gives us solutions on the parameter
space weighted by a density, generally the posterior density. Having a
distribution over the parameters enables us to compute a distribution
over predictions in the output space. This is an elegant way of transfer-
ring the uncertainty in estimation of parameters to predictions. Certain
problems often associated with models such as neural networks, including
robustness and data scarcity can then be handled in a more principled and
elegant manner. Another attractive attribute of Bayesian methods is that
they often subsume other methods. Methods which find point estimates of
model parameters is a case, where the uncertainty associated with infer-
ence of parameter has vanished completely. In Bayesian terms this can be
denoted by the posterior taking the form of a Dirac mass function.

1.2 Mechanics of Exact Bayesian Inference

Consider we have set of observations D = {x,,, y,}, where the z,, € R* is
the fixed input and generally a vector of attributes (such as an image or
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a sentence), and y,, is the scalar output. The relation of the output to the
input is modelled by means of some function f(-). The function could be a
simple linear model, a hierarchical model or even some complex non linear
function such as a neural network, having some parameters denoted by 6.
Then the model is set as: a prior over the parameter, p(0), and a likelihood,
p(D | 0), which is the conditional probability density of observing the
given configuration of data D over the parameter space after making some
suitable transformation. The parameter space can be, discrete, continuous
or a mixture of both. The object of interest for us is then the posterior:
p(@ | D) which is the conditional probability or probability density over
the parameter space after observing the data. Given the posterior we can
answer questions such as: what is the most likely value of #, and what
is the probability that 6 equals certain value given the data in case of
discrete parameter space or correspondingly in continuous space, what is
the probability that 0 lies between two values.

Inference, i.e. computing the posterior, can be done following Bayes’ Rule:

p(D | 6)p(6)
p(D)

where the denominator, p(D), is the normalizing constant. p(D) is known
as the marginal likelihood because its computations involves marginalizing,
or integrating out or summing for the discrete case, parameters 6. That
is, p(D) = [p(D|6)p(@). This integral results in a density for cases
where the data D is continuous and probability mass where D is discrete.
The integral has to be a converging one for the posterior to be a proper
distribution.

Apart from the integral discussed above, we commonly need a few more
integrations, for example when computing the summary statistics of high
dimensional posteriors, we often look at the first two moments: the poste-
rior mean

p(6| D) = (1.1)

u— [ onio| D)o,

and the posterior covariance:

S [0~ mw(®—npe| D).

Another example is the computation of the posterior predictive density
for on an unseen data point x*:

p(y*|D, ") = / p(y°16. D, *)p(6 | D)do. (1.2)

All these integrals can be generalised as integrals or expectations with
respect to the posterior density
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E,01p)(1(0)) = /I(B)p(@ | D)de, (1.3)

where (0) is the object of interest or integrand.

The central computation for Bayesian inference is performing the in-
tegration in Equation (1.3). The complexity of which grows with the di-
mensionality of the parameter space being integrated, even more so when
those integrals do not have a closed form solution. If we could generate
draws from the posterior, 8, ~ p(8|D)), the integrals can be approximated
by Monte Carlo (MC) as

E, 010 (1(0)) ~ % 3 1(6,). (1.4)

Since it is not easy in general to draw sample from the posterior distribu-
tion, approximate methods find an approximate density ¢(6) replacing the
posterior such that it is either possible to solve the integrals analytically
or it is easy to generate MC draws from the approximate density. This
sets up the need to study the various approximate inference techniques
available in literature.

1.3 Inference Methods

Bayesian inference methods can be divided in two main categories:

¢ Simulation-based, such as Hamiltonian Monte Carlo (HMC) and
importance sampling (IS) , which generate samples in the parameter
space, which are then used for further computations.

* Approximation based, where one places a tractable distribution in
place of the true posterior. Techniques such as Laplace approximation,
expectation propagation (EP) and variational inference (VI) fall in
this category. Having a Gaussian as the tractable distribution is the
most common and prevalent choice.

1.4 Hierarchical Models

Many categories of objects can be organised under subordinate or super-
ordinate classes: e.g. birds, cats, dogs, crocodiles are all animals, but cats
and dogs can be further grouped into ‘'mammals’. Similarly mammals like
leopards, tigers, lions and cats are part of a 'Felidae’ family, while deers,
elks, moose form part of the ’Cervidae’ family. Hierarchical models can
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capture the shared latent structure among observations commonly found
in many real datasets.

As hierarchical models seek to find out the shared characteristics of
systems while filtering away the irrelevant details, they can be of help in
making better predictions on unseen new systems. A hierarchical model
can make a more informed prediction about the quality of a hypothetical
seventh machine, than the alternative separate model and pooled models.

Posteriors in hierarchical models often have a complex shape and geome-
try and provide a difficult test for any algorithm which aims to improve
and produce accurate posterior computations.

This thesis lays a special emphasis on Bayesian hierarchical models.
For example, publications III-IV use the eight schools model and radon

model presented by [ ] and [ ] respectively, as case
studies for accurate posterior approximation. These are also covered in
details in related papers: [ , , , 1, which

also served as motivation for the work done in this thesis.

1.5 Probabilistic Programming

Bayesian inference requires the modellers to approximate the posterior on
account of intractability and computational constraints. Computational ef-
ficiency forces the user to think of a model so that model-specific derivation
procedures can be handled and do not become overly complex. This confla-
tion of model and inference is not desirable. In response to this restrictions,
probabilistic programming has emerged as a set of tools allowing to specify
models and then solve them by performing automated Bayesian inference.
Ideally a user of such tools should be able to specify the probabilistic mod-
els with some lines of code without having to worry about the inference
procedure. For a much more encompassing, and complete definition of
probabilistic programming, see book by [ 1.

Recently, interest in probabilistic programming language (PPLs) has
grown fast and Automatic differentiation variational inference (ADVI)/Black
box variational inference (BBVI) along with Hamiltonian Monte Carlo
(HMC) have emerged as the inference engines. The specifics of ADVI
algorithms are described later.

Some prominent modern frameworks include Stan [ , 1, PyMC [

, ] MXFusion [ , 1, TensorFlow Probabil-
ity [ , 1, Pyro [ , ]. Some older PPLs
include Church [ , 1, Anglican [ , 1, In-
fer.net [ , 1.
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1.6 Objectives and Scope

This thesis comprises of four publications: Publication I-IV, and this intro-
duction. Each publication either uses variational inference as the tool for
doing Bayesian inference or studies its properties from a more theoretical
perspective or diagnoses and highlights the challenges and problems with
variational inference in its current methodological form. This dissertation
addresses four research questions presented here in this section. This
section also describes how the research questions are related to the publi-
cations constituting this thesis.

Research Question 1: Multi-class classification problems are seen in
many fields. Problems like recommendations, object recognition, speech
recognition can be seen as cases of multi-class classification. With ever
increasing dataset size, it is becoming common for datasets to have a huge
number of categories [ classes. Consider the dataset EUR-lex which contains
57k English EU legal documents, each of which are tagged with one of
4.3k concepts/labels. Gaussian Process models allow to incorporate prior
information and provide uncertainty estimate which could be useful when
making decisions based on model predictions. Multi-class classification
with Gaussian Process models use the softmax function which provides
probabilities over classes by taking as input the latent functions for each
class modelled by a GP, coupling together all link functions at once. This
makes inference algorithms hard to scale when the number of classes is very
large. A recently introduced approximation of softmax function factorises
the likelihood such that each factor only involves two latent functions. Can
we make use of stochastic approximations of softmax function to make
inference tractable and scalable ? Research question 1 is addressed in
Publication I, which uses recently introduced approximations of softmax
function combining it with the well known variational inducing point
framework. These approximations have additional variables which when
optimized can tighten the lower bound to softmax function. The inference
is intractable, so a variational approximation is introduced, resulting in
a single variational objective which can be written as a double sum over
data points and classes. This helps GP models to scale where the number
of classes and data points is large.

Research Question 2: In many applications in real world, we are trying
to model an unknown function, but it is either difficult [ expensive to get its
value at a location, but rather it is possible to know which location has a
higher value in comparison to another location. Such a setting, where it
is only possible to make queries to an unknown function can only be done
in pair of points or ‘duels’ naturally occurs in recommendation systems,
A /B testing etc. For example, a user of a movie streaming service might
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find it easier to pick his favorite movie from a list of movies in place of
assigning them numerical scores. Although, some previous works have
provided approaches for dealing with preferential feedback for two points,
is it possible to extend it to a batch setting, where more than two points in
the space are compared ¢

Publication IT uses the factorised likelihood as the key tool in presenting
the Preferential Batch Bayesian Optimisation framework, where choices
are ranked in place of being assigned numerical scores. Three different
acquisition functions are presented. The work uses two different parame-
terizations of the Gaussian approximations, one using a structured diago-
nal covariance matrix and the other using a full rank covariance matrix
and compares their performance against each other and other inference
methods such as Expectation Propagation and HMC. Experiments are set
up to compare different inference methods and acquisition functions for
different values of batch size. While Chapter 2 gives an introduction of
variational inference, its application on GP models is presented in Chapter
3 which forms the background for these two publications.

Research Question 3: Black box variational inference has emerged as
a promising alternative to MCMC. It has been made scalable and widely
applicable by application of stochastic optimization where the gradients
can be estimated using MC draws and mini-batching. The performance of
the stochastic optimization algorithm is paramount to the success of BBVI.
How can we diagnose if stochastic optimization has worked well for BBVI ?
This comes with some sub-problems. Can we design a better stopping rule
than just running it for a fixed amount of iterations ¢ Can we diagnose if
the optimization has not yet converged ?

Publication III presents an algorithm for diagnosing convergence and im-
proving the quality of final solution by averaging the iterates only after a
certain iteration count. While this framework improves the performance
of the stochastic optimization algorithm to improve the quality of pos-
terior approximation, measured in terms of distance between first and
second moment, the publication shows even this might not be enough as
the dimension of posterior increases. The framework can also diagnoses
convergence issues for a single optimizer and is also useful for detecting
multi-modality in posterior using multiple optimizer runs. Chapter 2
presents a background into black box variational inference and discusses
the algorithm in detail.

Research Question 4: Black box variational inference requires users to
make decisions from a wide variety of choices: divergence measure, approx-
imating family. This is made possible because the integrals involved for
computing objectives and their gradients can be approximated with finite
average over MC draws. How does the finite sample bias affect optimization
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for the choice of divergence measure and approximating family? Several
different divergences have been proposed claiming benefits over others, but
how feasible it is to optimise for objectives associated with these divergences
algorithmically and practically in high dimensions or difficult posterior
geometry ¢

Publication IV utilizes a recently introduced Pareto-k diagnostic to analyse
how finite sample bias resulting due to MC approximations of integrals
affect stochastic optimisation algorithms for different divergence objectives
with different approximating distributions. The analysis that while mass
covering divergence measures offer improvements over the canonical ex-
clusive Kullback-Leibler divergence in theory, in practice the bias for these
divergence measures is much larger, making the stochastic optimization
extremely challenging and thus failing to converge to the optimum.

The bias goes higher as posterior dimension increases. These results
challenge the idea of using mass-covering divergences to obtain variational
approximations in high dimensions. Based on this analysis with E, the
publication finally gives some recommendations to the user about how to
make these choices.

1.7 Structure of Thesis

Publication I-II, use variational inference for applications. Publication
IV deals with identifying the algorithmic issues with canonical Black Box
VI and suggesting ways to diagnose and ameliorate them to some extent,
while Publication III looks at the robustness of SGD algorithm for optimis-
ing VI divergences commonly used in literature. All the publications are of
methodological or analytical nature, either bringing improvements over
current methods, solving scalablity challenges or then safeguarding the
use of VI algorithms. Chapter 2 gives an introduction to variational infer-
ence, providing the theoretical background for all the research questions
and presenting contributions of III and IV. Chapter 3 discusses Gaussian
process models briefly and then focuses on application of variational infer-
ence to Gaussian process models as done in Publication I and II. Chapter
4 provides a one page summary of each publication. Finally, Chapter 5
concludes the introductory part of the thesis by discussing some relevant
recent research by others as well as limitations and directions for future
research.
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2. Variational inference: Review and
recent advances

This chapter gives a background on theory of variational inference start-
ing from algorithms in its early application to new algorithms in more
contemporary research. First, sections 2.1-2.3 provide some general back-
ground and motivation. Section 2.4- 2.5 discuss some popular different
VI algorithms roughly in a chronological order, which are either used in
one of the publications or important in this context. Section 2.6-2.7 pro-
vide the background specifically for research questions 2 and 3. Section
2.8,2.9, 2.10, 2.11 analyse research question 3 and presents contribution
of Publication III. Sections 2.12, 2.13, 2.14 analyse research question 4
and presents contribution of Publication IV. Section 2.15 discusses the
software packages containing the tools developed in Publications III and
Iv.

2.1 Background and History

Variable Quantities called ’functional’ were thought of at least three cen-
turies ago by Euler and others when they tried to mathematically formu-
late several problems occurring in mechanics, geometry and physics. A
’functional’ is a function where the variable of the function is a function
itself. This means that it assigns a real definite value to a function belong-
ing to some class. Quoting the example problem from the book ’Calculus of
variations’ by [ ] used to motivate the topic; Consider all
possible paths a particle can take from point A to point B in a two dimen-
sional plane. The particle has a definite velocity v(z, y) for each point in the
plane. The time taken by the particle to reach point B along each path can
be considered as a functional of the particular path. A relevant question
then could be which path takes the least time. The branch of mathematics
for finding the maxima and minima of functional is called ’calculus of
variations’. An interesting and important such variational problem can be
stated as: Among all the curves of length [, find the curve enclosing the
maximum area. This problem was solved by Euler and the answer is the
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circle. Euler found a way of reducing the problem of finding the extrema of
a functional to the more familiar calculus problem of finding the extrema
of a function of n variables. He then obtained the exact solution by taking
the limit : limn — oc.

2.2 Modern history of variational inference

One of the first applications of variational methods in Bayesian inference
was inspired from work in physics [ ], and it was the approxima-
tion of an intractable distribution with a simple approximating distribution
having some factorial form. The intractability problem can emerge from
one of the three sources:

* it may happen that the target distribution does not have a closed
analytical expression, which generally happens because the normal-
ization constant (marginal likelihood) integral does not have a closed
form,

¢ it might be the case that it is NP-hard to evaluate the distribution in
the worst case.

¢ thirdly, even when evaluation has polynomial time, the power of
the polynomial might be too high, making the evaluation extremely
expensive for contemporary computers.

Early researchers favoured using simple approximating distributions
having some factorial form because they were easy to interpret, and more
importantly yielded a tractable approximation. The solutions were derived
by hand using calculus of variations technique with Lagrange multipliers,
quite similar to a standard optimization problem. [ 1
provides a tutorial on the early advances in VI.

The key idea in VI is to find an approximate distribution, which is close
to the target distribution. In context of Bayesian inference, the target
distribution is the posterior distribution. The approximate distribution
should belong to a family of tractable distributions for example Gaussian
density, such that resulting approximate integrals discussed in Chapter 1
are easier to estimate. These approximating integrals are also sometimes
referred as variational expectations, which are much easier to handle
than the original expectations since it is easy to get a MC estimates of
variational expectations, because it is much simpler to generate draws
from the approximate density. The measure of ’closeness’ can be defined
by divergences, the most prominent of them being the exclusive Kullback-
Leibler divergence. For continuous distributions this is given as

KL(4(0)|lp(01Y)) = [ lnpgf,f;qwme. @.1)
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This divergence is so popular and commonly used, that if there is no prefix
before KL divergence, most authors refer to ’exclusive KLV divergence (also
known as reverse KL). This is an important point since KL divergence
is an asymmetric measure, i.e. in general KL(q||p) # KL(p||¢). The KL
divergence in the other direction KL(p||q) is referred to as inclusive KL
(also forward KL).

VI with exclusive KL divergence provides a lower bound on the marginal
likelihood, commonly known as the evidence lower bound (ELBO), which
can be used as a proxy objective to optimize hyperparameters.

Early efforts focused almost exclusively on using the exclusive Kullback-
Leibler (KL) divergence. More recently, many other algorithms for minimiz-
ing other statistical divergences have been proposed as alternatives by re-

searchers, such as :y?-divergence [ , 1, a-divergence
[ 1, inclusive KL divergence [ , ,
, 1, adaptive f-divergence[ , 1. How the diver-

gences differ theoretically and practically is explained in Publication IV
and discussed in the later sections of this work.

In modern variational inference, the algorithms to minimize these diver-
gence measures do not use calculus of variations techniques. Instead, they
have been replaced with automatic differentiation (abbreviated as autod-
iff) frameworks, which offer much more representation capacity for the
approximating distributions. This is because, the gradients needed for opti-
misation do not need to be analytical but can be approximated with Monte
Carlo estimates and mini-batching if the dataset is large. Inspired by re-

search in physics [ , , , 1, the early application
of VI was focused on Bayesian neural networks [ ,
] and probabilistic inference in graphical models [ , 1.

Nowadays, VI is almost as popular as MCMC as inference method. This
thesis is also a step towards safe, robust application of VI for a wide class
of models. Some of the popular and prominent algorithms emerging in VI
literature are given in Table 2.1.

2.3 Integration through optimization

I give here a more general introduction to variational inference. Let p(6,Y)
be the joint distribution of a probabilistic model, where 8 € R” is a vector
of model parameters and Y is the observed data. In Bayesian analysis, the
posterior p(0 | Y) o p(Y | 0)p(0) is typically the object of interest, but most
posterior summaries of interest are not accessible because the normalizing
integral, in general, is intractable. Variational inference approximates the
exact posterior p(0 | V) using a distribution ¢ € Q from a family of tractable
distributions Q. The best approximation is determined by minimizing a

23



Variational inference: Review and recent advances

divergence D(p || q¢), which measures the discrepancy between p and ¢:

g+ = arg min D(p || q), 2.2)
NI

where A € R¥ is a vector parameterizing the variational family Q. Thus,
the properties of the resulting approximation ¢ are determined by the
choice of variational family Q as well as the choice of divergence D. In
cases where the optimization is stochastic in nature, there is no fixed point
solution and, the solution then also depends on the type of optimization
algorithm and algorithm parameters.

The family O is often chosen such that quantities of interest (e.g., mo-
ments of ¢) can be computed efficiently. For example, ¢ can be used to
compute Monte Carlo or importance sampling estimates of the quantities
of interest. We here introduce importance sampling since it is a recurring
concept in this thesis.

2.3.1 Connections with importance sampling

Let w(0) .= p(0,Y)/q(0) denote the density ratio between the joint and ap-
proximate distributions. For a function ¢ : R” — R, the self-normalized im-
portance sampling (SNIS) estimator for the posterior expectation Eg.,[¢(0)]

is given by
s

j(@ = Zl 25/1:(0;()03')45(93)7

where 6,,...,05 ~ ¢ are independent. Importance sampling estimates
allow for computation of more accurate posterior summaries and to go
beyond the limitations of the variational family. For example, it makes it
possible to estimate the posterior covariance even when using a mean-field
variational family. The SNIS is an important quantity of interest which is
discussed in Publications III-IV. The SNIS estimator is consistent but has
a finite sample size bias of O(1/5) [ , 1.

Often due to mismatch between true density and approximation, the den-
sity ratios will have a highly right-skewed distribution. This is explained
in detail in Section 2.8

Now we introduce the different flavours of VI, starting with classical VI
to modern black box variational inference (BBVI).

2.4 Coordinate-Ascent(Classical) variational inference (CAVI)

The standard recipe for this classical kind of VI is to use the exclusive KL
divergence and the mean field Gaussian as the approximating family. The
optimization problem is well specified and corresponds to:

qr- = arg min KL(q || p).
arEQ
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Table 2.1. Prominent algorithms in VI literature with their characteristics
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where ) corresponds to the parameters of the approximating distribution.
As explained earlier, this problem is not solvable, since we do not know
the posterior itself, the problem is converted to an equivalent optimisation
problem where a functionally equivalent quantity ELBO denoted by L is
maximized. After some manipulations, the following relation is obtained:

KL(q || p) + £ = log p(Y). (2.3)

Since p(Y) is a constant irrespective of the approximating density one
chooses, minimizing one of the terms on left is equivalent to maximizing
the other, and the problem in its equivalent formulation is given as:
g+ = arg max L.
ar€EQ

This is solved analytically using gradient based optimization algorithms.
Since the variational family is mean field Gaussian in this case, the idea
here is that we can optimize the ELBO with respect to a single variational
factor at each iteration, keeping others fixed. The optimal density ¢} () for
the i-th variational factor is proportional to the exponentiated expected log
of the conditional density,

4,(6) ox exp (B [log (Y. )] (2.4)

where the ¢~* denotes all factors excluding the i-th factor ¢y (6). Once the
variational factor ¢ is updated, the ELBO is recomputed with the updated
factor and i + 1 factor is computed with the same formula with the updated
i-th variational factor.

2.4.1 ELBO and posterior multimodality

The ELBO in general is a non-convex function of the flattened variational
parameter vector:\A = (m,C) " [ , 1, it is even non-smooth
in general because the entropy term in its formulation is a non-smooth
function [ , ] of C, the covariance matrix for a location-scale
family. This means it is sensitive to initialization, even in algorithms
using analytical updates and is likely to get trapped in a local maxima,
which is often the case in practise. In practice it has been observed that,
there exist many models which have multiple posterior modes. It is conjec-
tured that, the existence of multiple posterior modes can happen due to
model mis-specification and overparameterization. This thesis and publi-
cations IIT and IV also keep this conjecture as a key theme for motivation
and analysing results and deriving conclusions. Some recent work

[ ] also point to this as a possible explanation for 'no-best
phenomenon’ empirically observed by researchers in topic modelling. To
press the point further, multimodality is often seen in mixture models
due to label-assignment switching phenomenon (many equally plausible
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explanations of data-generating process). For such models it is often con-
sidered sufficient to capture just one of the modes since, they have identical
properties and can be all equally suited for prediction. However,there are
many models where the modes can have very different properties and
explain the data in very different ways. One mode for example might
show that the observation noise is high while the other mode might have
lower observation noise and high signal variance from

[ ] Chapter 5. There are also models which may have tough
posterior geometry such as Neal’s funnel density [ , ] or multiple
minor modes, all of which pose problems to VI. While these problems also
exist for MCMC, recent innovations like dynamic HMC, NUTS [

, ] sampling are more robust and easier to diagnose, for
example with divergences. Such robustness and diagnostics are lacking
from current VI implementations and serve as a motivation for this thesis.

When using CAVI the ELBO is monotonically increased to a local maxi-
mum and the ELBO on the whole dataset is monitored, which can often be
expensive to evaluate on large datasets. To ameliorate this problem, it has
been suggested to monitor the ELBO over a much smaller held out test set.
However, this proxy objective is not guaranteed to increase monotonically.
Hence, assessing convergence can be hard irrespective if the optimization
is stochastic or deterministic.

2.5 Stochastic variational inference

The main paper which introduced SVI to the community was by
[ ] and can be thought of as the first work which did general
Bayesian inference with variational inference, solving the optimization
problem with stochastic optimization [ , ], and
in the process making VI scale to larger datasets than ever before. The
’stochasticity’ is due to computing gradients and objectives using 'mini-
batches’ of data. This algorithm was successfully applied to the field of topic
modelling for document collections. This paper used natural gradients
and did not use Monte Carlo estimates for ELBO quantities and gradients,
which was later introduced in many papers in 2014 [ ,
, , , , I
So, the stochasticity was limited to the ‘'mini-batching’ source only.

A common and generic kind of model found in Bayesian statistics involves:
observations Y = y.y, some latent global variables 3, some latent local
variables, one for each datapoint z = z1.5 and some fixed parameters. Each
one of the observation y,, z, could be a collection of random variables. The
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joint distribution is a product of a global density and product of local terms.

N
p(Y.2,8] ) =pB) [[ p(yn.2n | B), (2.5)
n=1
where « is a vector of hyperparameters controlling the global hidden
variables 8. The distinction between the two set of latent variables is
that each observation and local variable are independent of all other
observations and local variables given the global latent variables

p(yna Zn ’ A, T —n, an) = p(yn, Zn | )\)a (2.6)

while the global latent variables have a prior on them: p(A) which could
well be correlated such as a multivariate normal distribution with a non-
diagonal covariance matrix.

A popular example is Bayesian mixture of Gaussians. The local variables
are the means and variances of mixture components, while the mixture
coefficients can be considered as global variables.

It is also assumed that both the prior density p(A) and the complete
conditional p(z,; | Yn,2n,—j, A) belong to the exponential family. Many
useful and popular models in statistics and machine learning literature
are examples of such models. These include: hierarchical linear regression
models, factorial models, probabilistic matrix factorisation models like
recommendation engines, hidden Markov models (HMM) used in speech
and signal processing. SVI uses natural The natural gradient is computed
on a small subset of data and is then scaled by N/B where N and B is
the number of datapoints, and batch size respectively. The natural gradi-
ent [ , ] ensures that the optimization happens in Riemannian
space and not in Euclidean space, avoiding the pathologies associated with
Euclidean space optimization.

This gradient is used to update the global variational parameters. The
local variational parameters which are implicit functions of global varia-
tional parameters, are then updated in expectation-maximization algorthm
style [ , 1. This method still requires some restrictions
on the form of the approximating distribution(mean-field) and the complete
conditionals.

2.5.1 Amortized variational inference

Given the problem where we want to do inference over the local latent
variablez; for a datapoint Y;, but we also want to do inference over all
the latent parameter/datapoint combinations. Since we are interested in
distributions over point estimates, z; is a normal distribution z; = N (;, 0;),
and suppose we have found out the optimal parameters .}, o for the i-th
datapoint, is there a way we can predict the optimal parameters for a new
datapoint? If we make a reasonable assumption here, that points closer
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in data space should also have similar latent parameters, that means we
can obtain a deterministic mapping, which can be learnt using a multi
layer perceptron (MLP) or a feedforward dense network. It should be noted
that we hope this function is not too wiggly, otherwise the learnt mapping
will not generalize well to unseen data points. This idea was famously
used in variational auto-encoder [ ], which is now
one of the de-facto generative modelling technique along with Generative
Adversarial Networks (GAN), although the author believes the idea was
first used by [ ]. The complexity of
the neural network is generally tuned empirically. This idea was also used
in Publication I.

2.5.2 Automatic differentiation variational inference

ADVTI is the key topic of this thesis and extensively used in publications
LIIT,IV. It is also known by other names like black box variational infer-
ence (BBVI) and doubly stochastic variational Inference (DSVI). They were
proposed by different authors and have some minor, subtle differences. It is
more general than the SVI method 2.5 introduced by [ 1
as it does not require closed form coordinate updates. However, for the
purpose of this thesis, we consider them to be the same. Originally, BBVI

introduced by [ ] used score gradients requiring some
elaborate control variate schemes to reduce the otherwise impractically
high variance of gradients. ADVI [ , land DSVI [

, ] both proposed to use reparameterised
gradients, which were shown to have much lower variance and are the
most preferred algorithms. Though commonly used, reparameterised gra-
dients do not always have lower variance than score gradients. ADVI offers
great flexibility and scalability since it involves computing gradients and
objectives using MC samples and occasionally mini-batching. A key point
to observe here is that while in the influential SVI paper by

[ ] discussed earlier in 2.5, the only source of stochasticity is
mini-batching, for ADVI the generic stochasticity is gradient computation
by MC samples, and mini-batching is second source of stochasticity which
is optional. Not all probabilistic models will have an objective which can
be written as a sum over datapoints.

The key idea of BBVI is stochastic optimization, i.e. the gradients are
expectations which are approximated by their MC estimates. It is hoped
that they are approximately unbiased, but as we discuss later in Publica-
tionlV, in pre-asymptotic regime this is rarely the case, and often the bias
is so large that the solution never converges to the true solution. Another
key-insight here is that the optimizer has two phases in its trajectory:
when it is far away from the solution, and a stationary phase when it is
oscillating around the solution. This is covered in Publication III of this
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thesis. Due to lack of space, some additional information was not described
in detail in these publications, which we do here in this chapter.

2.6 Variational families

As discussed earlier, it was not possible to use a wide range of approxi-
mating families earlier due to intractibility. This has been made possible
by advances made on automatic-differentiation software powered ADVI
described in section 2.5.2, which provides non-analytical gradients for a
wide range of distributions. This has made possible to use complex distri-
butions as approximating distributions, some of which we give here. Let
g be an approximating family parameterized by a K-dimensional vector
A € RE for D-dimensional inputs # € R”. Typical choices of ¢ include
mean-field Gaussian and Student’s ¢ families [ , ,

, 1, full and low rank Gaussians [ , ,

, 1, mixtures of exponential families [ , ,

, 1, and normalizing flows [ , ]. In
Publication III, we mainly focus on full-rank approximations in the ex-
periments, though the theory proposed is generally applicable to other
approximate distributions. In Publication IV, we mainly use mean-field
and normalizing flow families. Mean-field families assume independence
across the D dimensions: ¢(#) = []2, ¢:(6;), where each ¢; typically belongs
to some exponential family or other simple class of distributions. We take
the ¢; to be either Gaussian or Students’ ¢t with v degrees of freedom. The
distribution for the ith dimension has a mean parameter: yu; and a scale
parameter: o;. We parameterize the family by the means and log scales
¢; = log oi, 80 A = [p;, $i]2 ;. For computational reasons, we transform the
standard deviation to the unconstrained log space, so that the optimization
problem becomes easier. These families are often chosen for computa-
tional reasons: they are typically easy to optimise, the densities are not
expensive to compute, and drawing samples from them is straightforward.
However, their lack of flexibility makes them too simple for many real
world problems with complex posteriors.

Mixtures Mixtures of Gaussian or ¢ distributions are common in statistics
because they can model more complex datasets. They have not succeeded
as variational families in BBVI mainly due to the difficulty of optimization
and poor scaling to high dimensions. These models are particularly prone
to overfitting and in general difficult to optimise. Some recent papers have
suggested ways to improve their optimization, as in boosting VI [e.g.

, , , , , , , ]
To each component’s individual parameters they add mixing weights to
optimise. One also needs to decide the number of components C to fit a
priori, which is usually not a trivial problem.

30



Variational inference: Review and recent advances

Full rank families Full rank families no longer assume independence
across dimensions meaning that they can effectively capture correlated dis-
tributions with non-zero correlation. Consider the multivariate Gaussian
distribution

g(0) =N (O | p,¥%), (peR”,TeRP*P),

which has a total of D(D + 3)/2 parameters — in contrast to the 2D pa-
rameters of a mean field Gaussian. The quadratic scaling with increasing
dimension makes these families rather difficult to optimise in high dimen-
sions. We can also define a low rank approximation by decomposing ¥ as
Y =U+VV', where U € RP*P is a diagonal matrix and V € RP*?, with
d< D[ , ]. This results in fewer parameters, i.e. Dd + 2D
parameters but leaving us with a problem of choosing the hyperparameter
d at the price of less flexibility. While mixtures of low rank approximations
can be a good compromise between richness and scalability, they require
additional hyperparameters like mixture weights and number of compo-
nents to be optimised or chosen apriori which significantly detracts from
the benefits of using BBVI. Having better initialisation and putting a prior
on the number of components is still an active area of research.

Normalizing Flows Normalizing flows provide more flexible families that
can capture correlation and non-linear dependencies. A normalizing flow is
defined via the transformation of a probability density through a sequence
of invertible mappings. By repeatedly applying the change of variables
formula, the initial density flows through the sequence of transforma-
tions [ , ]. If we use an invertible, smooth
mapping f : RP? — RP with inverse f~! = g, to transform a random vari-
able 6 with distribution ¢(6), the resulting random variable 6’ = f(6) has a
distribution:

of ! -1

deta—f

q(0') = q(9) = q(0) |det 2.7

By composing several maps, a simple distribution such as a mean-field
Gaussian can be transformed into a more complex one. Here we use planar

flows [ , ] and non-volume preserving (NVP)
flows [ , 1.
Planar flows are defined as transformations given by :
f(0) =0+ uh(w'6 +b), (2.8)
where & is a smooth, non linear element-wise function.
NVP flows are defined as
f(el:d) = 01:(17

f(9d+1:D) — 0d+1:D © GXP(S(elzd)) + t(alzd)a
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where s and t stand for scale and translation, and are functions from
R? - RP~? and ® is the elementwise (or Hadamard) product operator.

In our experiments in Publication IV, we stack fully connected neural
networks for both scale s and translation ¢ operators. After the final layer
of s we place a hyperbolic tangent non-linearity.

The advantage NVP offers over other types of flows is that this con-
struction allows functions s and ¢ to be as complex as one desires, as the
Jacobian of this transformation is lower triangular [ , 1.

2.7 Optimization with Monte Carlo draws and Mini-batching

All the divergences used in the publications of this thesis can be seen as
special cases of f-divergence which we define here. For a convex function f
satisfying f(1) = 0, the f-divergence is given by

Dy(p [l 4) = Eoq [f <p(2(|0)y)ﬂ .

The exclusive Kullback—Leibler (KL) divergence corresponds to f(w) =
—log(w), the inclusive KL divergence corresponds to f(w) = wlog(w),
the x? divergence corresponds to f(w) = w?/2 and, finally, general a-
divergences correspond to (w® — w)/a(a — 1). We also consider the tail-
adaptive f-divergence, proposed by [ ] in publication IV.
We note in some literature, inclusive and exclusive KL divergences are
known as forward and reverse KL divergence respectively (from left to
right).

Though earlier we only talked about ELBO and exclusive KL divergence
relations, it has been shown in numerous works that minimizing the

f-divergence is equivalent to minimizing the loss function

Li(p I a) = Eonglf (w(6))]- (2.9)

Let L(X\) :== Lf(p || ¢») denote the loss as a function of the variational
parameters denoted by the vector:A. Many commonly used objectives such
as the ELBO [ , ] and CUBO [ , ] can also be
formulated this way. The loss and its gradient can both be approximated
using, respectively, the Monte Carlo estimates

s s
~ 1 ~ 1
L(\) = g SEZI f(w(bs)) and G(N) = g ;:1 g(0s), (2.10)
where 01, ...,0s are independent draws from ¢, and g : RX — R¥ is an

appropriate gradient-like function that depends on f and w.
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The solution:\* is found using the stochastic optimization recursive
scheme

At41 = At + 070Gy (2.11)

where g, is an unbiased, stochastic estimator of the gradient of the objective: £
at \; (i.e., E[g,] = VL (At)), n is a base step size, and 7; > 0 is the learning
rate at iteration ¢, which may depend on current and past iterates and
gradients. This optimisation routine is also popularly known as stochas-
tic gradient descent (SGD). In practice, adaptive gradient schemes like
ADAM [ , 1, RMSProp [ , 1,
Adagrad [ , ] are used. In some literature, the above
equation is generalized such that the updates take place in a direction d;
where d; is the direction for SGD update.

Atr1 = ¢ +nyedy. (2.12)

This covers cases which use history of gradient in a form of moving average
or other schemes. Standard SGD then corresponds to d; = g,. Adaptive
method like RMSProp, for instance, keeps a moving average of the squared
gradient: I'*! = BI' + (1 — B)g, ® g, which is used to rescale the current
stochastic gradient d'™! = g,/ VIt+1, making scale of gradient less sensi-
tive to its current iterate. This makes it possible to use a bigger step size
than would be possible with simple SGD.
The noise in the gradients is a consequence of using mini-batching, or
approximating the expectations using Monte Carlo estimators, or both
[ 1, [ 1, [ 1. For
standard stochastic gradient descent (SGD), ~; is a deterministic function
of ¢ only and converges asymptotically if -, satisfies the Robbins—Monro
conditions > ;2 7' = oo and ) ;2,77 < o [ , 1.
Under Robbins—Monro-type conditions, many stochastic optimization al-
gorithms converge asymptotically to the exact solution \* [

, , , 1, but any iterate \; obtained after a
finite number of iterations will be a realization of a diffuse probability
distribution m; (i.e., A; ~ m¢(A¢)). This key viewpoint helps us to analyse
the behaviour of stochastic optimization algorithms in III and given in
details later. SGD is very sensitive to the choice of step size since too large
of a step size will result in the algorithm diverging, while too small of a
step size will lead to very slow convergence.

2.7.1 Fixed step-size optimization and Iterate Averaging

If the step size becomes fixed after some iteration say ¢, i.e. V.. 7 =7,
then the iterates obtained by SGD (2.12), A;.r form a Markov chain,
which under some mild conditions will have a stationary distribution, the
characteristics of which are determined by the initial position ); and the
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step size which is now fixed i.e. 7,. This is even true when the step size is
fixed after following an adaptive schedule initially, for faster convergence.
As shown in Publication III, we should not expect a single iteration A;.; to
be close to the optimal: A* in high-dimensional settings, the expected value
of \; is close to A*. This led us to the utilize the idea of iterate averaging
(TA) to construct a more accurate estimate of A* given by

A=L3T N, (2.13)

where we should aim to choose ¢ > #. {( is the point where the optimiser
has entered stationary phase. The idea of iterate averaging has been
proposed before in Markov chain literature [ , 1, in context
of convex optimization [ , , , ] and
more recently to improve generalization in deep learning [ ,

]. The key idea here is how to determine when to start averaging.
There are important details to consider here, which I explain later.

2.8 Tail-index and %

A tail index can be used to determine the number of finite moments a
random variable has. Estimating tail index is a common research theme
in extreme value theory. In this thesis Publications III-IV, tail index
is used for carrying out analysis and diagnosis following modelling and
inference. Here we give a short introduction to thick tails and tail-index.
A non negative variable has thick tail when the tail decays at a slower
rate than the exponential function exp~t. The probability mass in tails as
F,(t) = P(w > t) is asymptotically equivalent to t~®" as t — oo for some
positive o*. This is formally written as

Fu(t) = L(t)t™, (2.14)

where L is a slow varying function such that lim; ,., L(ct)/L(t) = 1 for any
¢ > 0. Here o* denotes the tail index of the density ratio defined above: w,
and E[w®] is finite only if &« < o*. In other words, the density ratio: w has o*
finite moments. This is the motivation for using thick tailed distributions
such as ¢ density as the approximation ¢ in literature, which makes the
density ratios bounded from above theoretically. It is another matter that
in high dimensions, as shown in IV, the bound can be so high that this
idea stops working in practice (limited MC draws). The k used in this

work [ , , , ]is an estimator for the inverse
of o*. [ 1, [ ] are important references
proposing or comparing tail index estimators. [ ] used
the tail index estimator given in [ ] to analyse

gradient noise for deep learning models on typical deep learning datasets,
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while I used the estimator in [ ] for the estimation of
commonly used variational objectives and also divergences.

One challenge with variational inference is assessing how good of an
approximation, the obtained variational approximation after optimization
gx(0) is to the true posterior distribution p(0|Y’). Let 04, ..., 05 ~ ¢» denote
draws from the variational posterior. If the proposal distribution is far from
the true posterior, the weights w(6,) will have high or practically infinite
variance. The number of finite moments of a distribution can be estimated
using the shape parameter k in the generalized Pareto distribution (GPD)
[ , 1. Theoretical and empirical results show that values
below 0.7 indicate that the approximation is close enough to be used for
importance sampling, while values above 1 indicate that the approximation
obtained as a weighted average is very poor [ , 1.

Interestingly, we can also use k to assess the behaviour of the stochastic
optimization algorithm used to obtain the VI solution. Recent work by

[ 1 suggests that SGD iterates with fixed step size
may converge towards a heavy tailed stationary distribution with infinite
variance for even simple models (i.e. linear regression). Characterizing
noise distributions with momentum based optimisers is still very active
area of research. Furthermore, even in cases that don’t show infinite vari-
ance, the heavy tailed distribution may not be consistent for the mean,
i.e. the mean of the stationary distribution 7, might not coincide with the
mode of the objective. This would imply that some of the assumptions in

[ ] wouldn’t hold in practice for some parameters in the
optimization, which in turn would make iterate averaging unreliable. We
again rely on k to provide an estimate of the tail index of the iterates (at
convergence) and warn the user when the empirical tail index indicates a
very poor approximation.

VI for all its success still has many challenges in the prevalent algorithms
which need to be acknowledged, and possibly resolved in future research.
First, we describe the challenges in more detail in the next sections, at the
same time presenting ideas to fix them or atleast diagnose them for the
end user. This is covered in Publications III and IV, but I summarise them
here in some detail in this chapter in Sections 2.10, 2.11, 2.13 and 2.14.

2.9 Convergence for stochastic optimization in VI

While asymptotically (in the number of iterations and Monte Carlo sample
size S) there may be no issues with stochastic optimization or divergence
estimation, in practice black-box variational inference operates in the
pre-asymptotic regime, since we do not have infinite computing resources
at disposal. As we cannot run the optimization for ever, the lack of a
good stopping criterion is a major challenge for these methods. The high
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variance in stochastic gradients makes the users go for a smaller step-size
and adaptive gradient methods (which use a moving average over the past
gradients) like AdaGrad, RMSProp etc. these methods may introduce bias
due to premature stopping. Moreover, these optimisers may not even be
consistent, which means that given an optimization scheme, if they are
run for an impractically large time (infinite), the solution obtained may
still not be one of the optima (the member of the variational family, which
is closest to the target in terms of divergence measure chosen).

Some authors recommend monitoring the ELBO or the predictive log-
likelihood of a test-set and stopping the algorithm when the relative ELBO
drops below a certain threshold 1072 [ , Jor 1074

, ]. Taking such a snapshot based approach can be highly mislead-
ing. While no diagnostic is perfect, AELBO is highly susceptible to noise.
Similarly, many strong arguments can be given against the predictive log
likelihood approach which seems to be the preferred and recommended
approach in literature [ 1.

We show in Publication III, that the ELBO estimates might be so noisy
that we might stop too early even when the true solution is relatively far
away. In our experiments, we found the AELBO value oscillates around
a quantity which is problem and model dependent. Having a very strict
threshold might result in the condition never triggering. For some models
and with some optimization schemes, even 10~2 might be too strict of
a threshold (Publication III) and for some other models it might be too
weak of a condition [ , ]. Even when monitoring predictive
likelihood to detect convergence, there is no guarantee that it will increase
monotonically and the optimum may even have a worse predictive log-
likelihood than a point in its vicinity, since it is estimated only on a subset of
data. It is possible to get a worse predictive likelihood on a validation set at
the optimum solution(i.e.say true posterior) due to model misspecification.
Another issue with this approach is that it takes away a key attractive
property of Bayesian methods of not having to throw any data away from
training.

Although I focus on exclusive KL divergence objective, this should broadly
apply to all BBVI methods which use stochastic optimization. The prob-
lem gets only more challenging with other variational objectives such as
CUBO, the objective for minimizing y? divergence. In case of ELBO, it is
guaranteed that the objective evaluated at any point, A # A* other than
the optimum is still a lower bound to the log marginal likelihood, since MC
estimation can rarely over-estimate ELBO on expectation. For objectives
such as CUBO which is an upper bound over marginal likelihood, the objec-
tive estimated might be higher or lower than the log marginal likelihood,
for sub-optimal variational parameters, due to huge under-estimation of
objectives with polynomial dependence on density ratios. Same holds for
variational objective for inclusive KL divergence. Please refer to Publi-
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cation 4 Figure 2. This is a big challenge for mass-covering divergences,
since in practice with MC estimation, because of downward bias, their
variational objectives are not necessarily upper bounds.

For objectives associated with other mass-covering divergences, we show
that the variance and bias of gradients is likely to be much higher than
for the ELBO. We propose a robust VI algorithm in Publication III, which
uses the perspective of seeing the optimiser as a Markov chain and then
apply known diagnostics from MCMC literature to know if the optimiser
(Markov chain) has converged approximately to its stationary distribution,
the theory for which is backed by [ 1.

2.10 Detecting convergence to stationarity

The stochastic process induced by the SGD iterates of a variational pa-
rameter A : Ay .7 is stationary if the joint distribution of any subset of
the sequence is invariant with respect to identical shifts in the indices.
Informally speaking, if we imagine a distribution over the region of the
variational parameter space, where the optimiser tends to reside, after a
point it will become stable and fixed.

Stochastic optimization with a fixed learning rate displays two distinct
phases: a transient phase during which the optimization makes rapid
updates towards the optimum, which is followed by a stationary phase dur-
ing which iterates oscillate around the mean of a stationary distribution:
A = [ Amy(d)\). These phases are akin to the 'warmup’ and ‘mixing’ phases
of MCMC runs. Before describing more about the approach developed in
this work, we first summarize some recent methods and algorithms to
detect stationarity. One prominent line of work is based on using a statis-
tical test to determine if a suitable function (invariant) has expectation
zero by checking if the empirical mean is close to 0, under the stationary

distribution of the iterates [ , , , 1. This is the key
idea behind the algorithms SASA and SASA+ by [ ] and
[ ] respectively, which have been recently proposed for

detecting convergence in training of neural networks, the optimization for
which is highly non-convex. Such methods should also transfer well for
monitoring convergence for BBVI.

The invariant function is defined as: A =< dy, Ay > —$||d¢|[>. While it is
easy and computationally cheap to compute this expectation with inner
products, one issue with this test is that all variational parameters are
used as once, making it hard to know which variational parameter and
related model parameter can be the cause of convergence issue. This can
be extremely important information as shown in Publication III, where
the scale parameter was found to have problematic convergence in the
eight school centred model. When the model was re-parameterised to non-
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centred parameterization [ , ], the convergence
issue was resolved.

The above test can be improved to a multivariate hypothesis test by
applying a separate hypothesis test for each of the variational parameter,
with convergence triggered after all tests confirm stationarity in the same
way R, ESS and MCSE are checked for all variational parameters. In case
the dimensionality of the variational parameters is very high, then it is
also possible take a random subset of them to perform check at the cost
of some robustness. The split-R diagnostic checks the whole optimization
trajectory after splitting it into two parts. This approach while being
computationally more expensive than the AELBO stopping rule is much
more robust and looks at all variational parameters.

2.11 MCMC diagnostics for VI optimization

As discussed in Section 2.7.1, if the learning rate is fixed after a point, such
that ;... = 7, then we can view the iterates \;, \¢y1,--- , A7 as a Markov
chain (MC), which under certain conditions will have a stationary distribu-
tion m,. As we found it in publication III, the connections between constant
step size SGD and MC dynamics lead us to use convergence diagnostics for
MCMC, which have received much more rigorous treatment and testing
over the past two decades, compared to convergence in BBVI. The diag-
nostics and their formulae are given in the Table 2.2. It is important to
state that we use multiple convergence diagnostics and not just one, which
makes it harder to falsely detect convergence at the cost of being slightly
too pessimistic and conservative. The diagnostics used for robust VI op-
timiation are: R [ , 1, Effective sample size (ESS) and
Monte Carlo Standard Error (MCSE). These can be read in detail in

[ ] but we describe them here briefly in context of MCMC.
It is recommended to run MCMC with multiple independent chains, such
that the sampler distribution should converge to the target probability. If
the chains have mixed up well, then the variance of all the chains mixed
together should not be much higher than the variance of individual chains.
This can be done for each parameter individually alerting the user about
which particular parameters are problematic for convergence (the user
can consider reparameterizing those as a remedy). Ris computed as the
standard deviation of a parameter denoted as: (V)'/2 taken one at a time
divided by the root mean square of the separate within-chain standard
deviations (W)'/2. When this number is close to 1, it means the variances
are very close to each other. The variances computed above do not give
the full picture since there is usually very high autocorrelation among the
chains. The effective sample size (ESS) of a quantity of interest shows
how many independent draws contain the same amount of information
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as the dependent(due to autocorrelation) sample obtained by the MCMC
algorithm. The higher the ESS the better it is. To compute ESS, it is then
important to know the autocorrelation values p; at lag values from 1 to
some lag index 7" where T is taken to be 100 in practice. If all the draws are
independent , the ESS should come out to be JN, where J is the number
of chains and N is the number of draws in each chain. The MCSE quantity
can be used as a stopping rule in MCMC, i.e. when it drops below a certain
threshold. Determining the threshold requires domain expertise as it is
scale dependent unlike ESS. MCSE can be used to diagnose the efficacy of
iterate averaging Equation (2.13) the same way it is used to determine the
accuracy of empirical average of a parameter of interest:6 as an estimator
for posterior mean E[6].

These diagnostics can be used on multiple runs or even with a single
run after splitting the chain into two equal parts. Since we do not want
to compute these values too often, we only estimate them after a fixed
amount of iterations W. We found W = 200 and W = 100 to be good
default values. These diagnostics are coupled with iterate averaging as
also recommended in deep learning and optimization literature [

, I , 1. The crucial difference in our work is
that iterate averaging is done only after convergence diagnostic is triggered
and stopped when ESS and MCSE reach a certain threshold. The threshold
values for ESS and R are less conservative compared to corresponding
values from MCMC literature, while the value for MCSE was chosen
empirically and taken to be of the same order as the initial step size. These
diagnostics worked well with adaptive optimizers like Adagrad, ADAM,
and RMSProp.

These statistics are computed for each variational parameter. In case
the user is happy with point estimates without additional uncertainty
estimates, the convergence check can be made only on location parameters.
If convergence is not detected even after running the optimization for a
given amount of iterations, we should either change the approximating
family or reparameterize the model. If convergence is achieved, the user
can put more trust in the results.

MCMC diagnostics is still an active area of research with recent innova-
tions like the recently introduced: split-R and ESS for tail quantities [

, 1. These ideas fit well in the Bayesian workflow scheme

[ ; 1.

2.12 Challenges with exclusive KLVI and mis-specification
Algorithms for minimizing the exclusive KL divergence are the canoni-

cal algorithm of variational inference. This is because of its tractability
compared to other divergence measures and good theoretical properties
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Table 2.2. Convergence diagnostics and recommended thresholds

Diagnostic Formulae Recommended value
split R (V/W)1/2 1.1-1.2
ESS IN/(1+ 3272, 2p1) 20
MCSE {V(X\)/ESS(\)}1/2 0.02

of ELBO with respect to maximum likelihood solution. However, the fam-
ily of approximation Q is very often mis-specified, which means there
is no member ¢* which has zero KL(¢||p) divergence. It is also difficult
to make a decision whether the exclusive KL divergence of the optimal
KL(¢*||p) is small enough for a downstream application [ ,

, , , , ]. This has mo-
tivated application of Importance Sampling (IS) to reduce the bias from
posterior summaries [ , , , 1. Using the solu-
tion as a proposal for IS also provided the k as a diagnostic. While a small
k is not a guarantee of a good approximation accuracy, it guarantees that
the approximation posterior summaries are close to true posterior sum-
maries after IS/PSIS corrections. Moreover, we can obtain a new proposal
by computing moments from the MC draws weighted by their importance
weights. This procedure can be iterated to obtain an increasingly better IS
proposal [ , 1. [ ] gave an algorithm
to bound the error in summaries such as posterior mean, posterior std.
dev. and posterior covariance. While being useful, however, these bounds
can still be loose and they may require computing the y2-divergence (and
optimising CUBO) which itself might not be reliable if estimated stochas-
tically, especially in high dimensions. This has encouraged researchers
to look for alternatives mass-seeking divergences such as inclusive KL
divergence, a-divergence, Renyi-divergence, which can possibly cover the
posterior mass better, a claim which is contested in publication IV for high
dimensional non-Gaussian posteriors.

2.13 Underestimation and Overestimation of Marginal Variances

In case where the true posterior does not lie in the same family as the
approximation, the approximating posterior ¢* will be different from p
when the optimization has converged. If the objective divergence is chosen
to be exclusive KL, then the margin al variances (and uncertainty) are typ-
ically underestimated. This is because of its mode-seeking properties. The
opposite is true for inclusive KL divergence as the variances are typically
overestimated I'V. We write ’typically’ because this is not always the case.
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As shown in [ land III, for instance, in hierarchical models,
like the eight schools models, a positive bias in estimation of the scale
parameter will lead to overestimation in variance of other parameters.

2.14 High dimensional geometry and low overlap in typical sets

Here, we introduce the concept of ’typicality’, which is central to high
dimension probability distributions where normal intuition gives away.
Expectation values as given in Equation (1.3) are given by accumulating
the integrand over a volume of parameter space and, while the density
is largest around the mode( where the density is the highest), there is
not much volume there. To identify the regions of parameter space that
dominate expectations we need to consider the behavior of both the density
and the volume. In high-dimensional spaces the volume behaves very
differently from the density, resulting in a tension. The probability mass
is given by the product of the density and the volume around that point
d@, then to find regions where probability mass lies, we cannot consider
regions where either is extremely low. Thus a point near the mode will
have high density but the neighbourhood region around the mode has
extremely small volume. Similarly far from the mode, the neighbourhood
regions have very large volumes but extremely low density, the regions
between the two extremes is the only place to capture probability mass.
If we draw samples from a distribution in high dimensional space, it
becomes extremely unlikely to draw any samples close to neighbourhood
of the mode. The density values alone do not tell where probability mass
is concentrated and the density values of the samples drawn from the
approximate density in high dimensions will have much lower densities
compared to mode. The only significant contribution to the integral in
Eq. (1.3) comes from some region where neither is extremely low, known
as the typical set. A much more formal definition and information theory
connections is given in [ 1. [ 1is
another excellent reference to get intuition for high dimensional geometry.
As the dimension increases, the typical set gets narrower, for example
an isotropic multivariate Gaussian density A (0,1;) will be concentrated
in a thin shell of radius ov/d. This is due to ’concentration of measure’
phenomenon.

As the dimensionality of the posterior increases, it becomes more and
more difficult to find a good proposal distribution for Importance sampling.
This brings us to another question: how fast or slow does then, the esti-
mation of divergence objectives(and gradients) deteriorate with increasing
dimensionality compared to importance sampling. The low overlap of typi-
cal sets in high dimensions causes the estimation of objective and gradients
with MC samples to have pre-asymptotic bias, which can massively slow
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Figure 2.1. Illustration of a mean-field approximation with exclusive (mode-seeking) and
inclusive (mass-covering) divergences. The target is a normal distribution and
the approximate distribution is a t distribution with 7 degrees of freedom. (a)
The typical 2D illustration (correlation 0.9) gives impression that the inclusive
divergence would provide a better approximation. (b) The marginal distri-
bution of the 2D illustration, showing the heavier tails of the approximate
distribution. Heavier tails guarantee that the importance ratios are bounded,
and thus the importance sampling estimate has asymptotically finite variance.
(c,d) The marginal densities as a function of the distance from the mode in 10-
and 400-dimensional examples (correlation 0.10). These demonstrate that,
even for much lower correlation levels, the intuition from the low-dimensional
examples does not carry over to higher dimensions: although the importance
ratios are still bounded and importance sampling has asymptotically finite
variance, the overlap in typical sets of the target and the approximations gets
worse both for exclusive and inclusive divergences.
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Table 2.3. Required finite moments to estimate dlvergences ford >0and a > 1[
, Table 2]. The last column gives the formulae required to compute
the Pareto k index to the gdpfitlw function in arviz

Objective f(w) Moments

Exclusive KL  log(w) o log(log(w) — min(log(w)) +
Inclusive KL wlog(w) 240 log(w log(w) — min(w log(w)) +

% (w? — w)/2 4

a-divergence (w® —w)/(a(a—1)) 2« a X log(w

down stochastic optimization speed and can even result in divergences
in optimization. Another ramification is that the low overlap causes the
distribution over the density ratio to have a heavy right skew, implying
that even after averaging over a large number of samples, most empirical
estimates Z _, ws wWill be smaller than the true mean. This causes the
variational parameter solutions obtained after minimizing mass-covering
divergences, algorithmically done by maximizing corresponding divergence
objectives) like y2, o to be biased towards exclusive KL divergence esti-
mates due to underestimation, as also reported by [ ,

] empirically. As dimensions increase, the overlap in typical sets of
true posterior and approximation decreases and optimizing mass-covering
divergences becomes extremely challenging with standard existing stochas-
tic optimization algorithms [ , 1.

As explained in Publication IV, this depends on the function f(w) applied
to the density ratios, for the computation of objectives and gradients. If the
function f is strongly concave i.e. grows sublinearly like f(w) = log(w) as in
case of exclusive KL divergence, we can expect all the moments to be finite,
hence the tail index value is quite small, and computation of Exclusive KL
divergence with MC samples is more reliable than the corresponding IS
estimate. If the function grows super-linearly, then the estimation will get
worse at a faster rate than IS. Since selecting a variational family that can
match the typical set tends to be more difficult in higher dimensions, we
should expect k to be larger for higher-dimensional posteriors. We can hope
to reduce low overlap in typical sets either by improving on the variational
family(for example, replacing mean field Gaussian density by mixture of
Gaussian densities) or by reparameterising the model [ , ,

, I

In table 2.3 we show a summary of the divergences we study in our work
and the required number of finite moments for each of them. The faster
f(w) increases as w increase, the more finite moments that are required —
which only get harder to estimate in high-dimensional cases.
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2.15 Software

The convergence diagnostics for MCMC and k from importance sampling

literature can be found in the viabel [ , 1, arviz [

, ] and pymc3 [ , ] package. All these packages
are in Python. Another notable package in R programming language with
diagnostic is posterior [ 1.

2.16 Other inference schemes

2.16.1 MCMC and HMC

Hamiltonian Monte Carlo is a class of MCMC family of algorithms and
widely considered as the gold standard. There have been many recent ad-
vances which have made HMC computationally more efficient and popular
so much so that it is the main inference engine for modern probabilistic
programming frameworks and languages such as Stan, PyMC, Pyro, and
TensorFlow probability. The new dynamic U-turn HMC sampler aided
with the automatic differentiation engine of these modern frameworks
saves the user from the cumbersome and time-taking task of manually
tuning algorithm’s hyper-parameters, and manually computing gradients.

2.16.2 Laplace approximation

In Laplace approximation, the true posterior is approximated by a multi-
variate Gaussian with its mean as the mode of the true posterior and the
inverse covariance matrix as the Hessian of the posterior at the mode.

p(0lY; ¢) = q(0]¢) := N (07,57

where 0* is the mode and X! is the curvature of the posterior density.

2.16.3 Expectation propagation

Expectation propagation has been successfully deployed by researchers and
has yielded excellent results with Gaussian processes. It has important
and good theoretical qualities and can sometimes overcome some issues
associated with standard VI, since it minimises the inclusive KL divergence
between the target and the approximation, both of which are updated at
each step.
Publication II also uses EP as one of the main inference techniques.
Some recent work on deep Gaussian processes also uses EP [ ,
1. EP is an iterative algorithm which minimizes the inclusive KL
divergence (as opposed to the conventional exclusive KL divergence), has
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no theoretical convergence guarantees and in practice often suffers from
numerical issues like underflow requiring bespoke implementations and
numerical tricks. For lower dimensional and moderate data settings, it
can often produce better results than VI as also shown empirically in II.
Moreover, EP requires model specific derivations and can be difficult to
implement when the moment matching sub-problem can not be solved in
closed form.

45






3. Gaussian process and variational
inference

This chapter introduces the concepts and background for Publications I
and II and how these publications contribute towards research question 1
and 2. Section 3.1- 3.2 provide a brief introduction to Gaussian process
and discuss the challenges in GP modelling. Section 3.3 provides an intro-
duction to techniques developed in recent research aimed at solving these
challenges, which the publications also make use of. Section 3.4 provides a
short introduction of Bayesian optimization for a better understanding of
Publication II. Finally, Section 3.5 concludes by listing software for these
models.

3.1 Introduction

Gaussian processes are a type of stochastic process, suitable for defining
flexible prior distributions for functions in a Bayesian setting. Gaussian
process (GP) models have found applications in many domains such as sig-
nal processing [ , 1, geostatistics [ , 1, state-space
modelling, reinforcement learning, Bayesian optimization among others. It
has been successfully used in tasks such as drug-dose modelling for infants,
predicting energy in atoms etc. Several methods used in other disciplines
like Kalman Filter, Kriging, Wiener-Kolmogorov filtering are equivalent
to GP. Gaussian processes became popular because they could be seen
as a generalisation of neural network with infinite units as shown in the
seminal work of Radford Neal [ , 1. They have been widely adopted
in many research fields where uncertainty quantification is of paramount
importance such as sequential decision making/active learning [

, 1, model based planning [ , ], un-
supervised data analysis and dimensionality reduction [ , 1,
Bayesian optimization (BO) [ , , , 1, ap-
plications of BO such as hyperparameter optimization of machine learning
algorithms [ , 1, approximate bayesian computation (ABC)
for estimating horizontal gene transfer [ , ,
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, ], human pose estimation [Ek, 1, survival analysis [

, 1, finding minimum energy paths in atoms [ ,

1, learning user preferences [ , LI , 1,
time series [ , ] and state-space modelling [ ,

1.

Lawrence used GPs for non-linear dimensionality reduction, a model
which came to be known as Gaussian process latent variable model (GPLVM
) [ , 1. GPLVMs generalised existing techniques for dimen-
sionality reduction such as PCA (principal component analysis) a linear
dimensionality reduction technique. At about the same time, Gaussian
process were also used for modelling binary and multi-class classification
[ , , , ]. The infer-
ence procedures for GPs require inversion of a N x N matrix which has
cubic complexity. More recently, researchers have been able to scale GPs to
big data and learn richer representations building on recent advances in
Sparse GPs and stochastic variational inference by [ 1,
allowing training with large and complex data.

This chapter reviews the basics of Gaussian process regression and
classification, sparse GPs and application of variational inference and
stochastic variational inference, forming the theory and background for
Publication I-II.

A more thorough review of the Bayesian approach to Gaussian process
regression can be found in the book of [ 1.

The observation model stated above assumes that the observations are
conditionally independent of each other given the latent function values
f at the inputs X. This is the standard setting found commonly, but
Publication II does not follow this, and the standard inference algorithms
have to be modified to take this into account.

3.2 Gaussian processes

Formally defining, a Gaussian process (GP) is a collection of random vari-
ables with a multivariate Gaussian distribution for any finite set of these
random variables. The random variables are often indexed in a continuous
domain such as time or space. Gaussian random variables are closed under
marginalisation and conditioning, which allows us to make a leap from the
infinite dimensional object to a multivariate Gaussian distribution. A GP
can also be seen as a generalisation of a multivariate Gaussian distribution
to infinite number of dimensions. The marginalisation property of Gaus-
sian distributions offers tractability and allows us to work only with a finite
set of function instantiations at the training points f = [f(x1), -+, f(zn)]
with which we can then make predictions for function instantiations at the
test points(X*): £* = [f(z*)]. Bold letters indicate vectors.
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A Gaussian process model for the probability distribution of function
f : RP — R is specified by a mean function m : R” — R and a covariance
function k : RP x RP — R. The mean function specifies the mean level of
the distribution of f(x) at a given input point x € R”, i.e., E[f(x)] = m(x),
and the covariance function specifies how the values of f at any two input
points, x,x’ € RP, correlate with each other, more precisely, E[(f(x) —
m(x))(f(x") —m(x"))] = k(x,x). Given an arbitrary set of input points X =

x x®@) . x(M]T, the joint probability distribution of function values
f = [f(xW), f(x®),..., fx™))]T is defined as a multivariate Gaussian
distribution

p(£) = N(m, K (X, X)), 3.1)

with mean vector

k;(x(N),x(l)) k(x(N>,x(2)) k(x(N),x(N))

The mean function of the prior GP model is assumed to be set to zero,
which is a common practice and applied also in Publications I-II after
suitable data transformation. To summarise, we can formulate GP as a
hierarchical model here:

Hyper prior : = ¢ ~ p(¢)
Gaussian Process Prior : = f ~ p(f|X, ¢) = N(0, K (X, X))

N
Likelihood : = Y|f, 7 ~ p(Y|£, 8) = [[ p(wil /- 5)-
=1

3.2.1 Covariance functions

The key part of a Gaussian process model is the covariance function, which
is used to encode favourable properties of the unknown function. From
the perspective of machine learning, it has a particularly important role in
defining what can be learned about the function based on observed values.
If a covariance function k(x,x’) depends only on the vector between the
two points, x — x’, it is called stationary since it behaves similarly in all
parts of the input space. If a covariance function is also isotropic, it can be

written simply as a function of the distance ||x — x'|| = \/ ZdD:l(xd — )2,
which means that the behaviour is similar in all directions.
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For this thesis, we only consider the exponentiated quadratic (also called
as radial basis function (r.b.f) or Gaussian kernel in some literature) kernel
function as the only assumption we make is that the functions are smooth
and continous. This is given as:

N 2 1% — x'||?
k(x,x") = o2, exp<—212> . (3.2)
where the lengthscale [ and the variance o, are the hyperparameters of the
covariance function. The covariance is larger when the two input points are
closer to each other and decreases with increasing distance. The magnitude
om defines the process variance, i.e., how much the values of f tend to
deviate from the mean function, and the length scale | defines how far the
effect of the covariance function fades out. In the isotropic form, the length
scale is the same in all directions, but it is also possible to give separate
length scales [; for each input coordinate d = 1,..., D: This covariance
function is infinitely differentiable, meaning that sample functions/path
drawn from the probability model are also infinitely differentiable.

3.2.2 Posterior as conditional Gaussian process

In Gaussian process regression, the observation model is given as: p(y|f) =
N (y|f,o*I). The posterior is also a GP, given as:

FIX,y, 0 ~ N(Kyp(Kpp+0°1) 7y, Ky — Kpp(Kyp+ 071 Kp).
The predictive distribution for the test datapoints X* is given as:
p(fy, X, X*) = N(f*| Ty, K. — TKjyy),

where T = K, (K¢ + o?I)~!. The matrix K, ¢ denotes the cross-covariance
matrix between the training data points X and test data points: X*. The
hyperparameters ¢ are optimised by maximising the marginal likelihood
p(ylg) = N(y |0,Kys + o°I).

3.2.3 Challenges with Gaussian process modelling

There are two main challenges generally encountered when using Gaus-
sian process as prior. When the likelihood is non-Gaussian, the posterior
and predictive densities do not have a closed form. To overcome this, ap-
proximation methods discussed in section 2.16 are also applicable here.
The second challenge is that for the general case, the computation opera-
tions require O(N?3) operations and O(N?) memory complexity. Both the
challenges are encountered in Publication I and II. As we see in those
publications, both the problems can be overcome with the use of variational
inference.
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3.2.4 Other inference methods for GP

Other popular inference methods for GP include expectation propagation,
Laplace approximation, and Hamiltonian Monte Carlo. Among these HMC
is quite slow and cannot be used for complex large scale data applications.
Laplace approximation in context of GP models has been extensively
used in packages like INLA (integrated nested Laplace integration) [

, ] and the GpPstuff package by [ 1. For many
models, this scheme offers fast inference without losing much accuracy.
Laplace approximation can be used as a tool for marginalising parameters
or/and hyper-parameters as its general idea and design can be applied in
many situations.

3.3 Overcoming GP scalability and intractability

GP models are non-parametric, there is a latent function value f for each
input point, which gives them the flexibility to model different forms of
functions. There are several methods which have been proposed over time
to tackle computational complexity challenges of GPs. Our focus in this the-
sis will be on sparse GPs with inducing points framework using stochastic
variational inference (used in Publication I), which is also the most pre-
ferred technique with most impressive results. A related approach which
uses inducing points to approximate the covariance matrix (K;;) with a
lower rank approximation K,y ~ K ququ}Ku 7 where K, € RM*M and
M <« N. A recent class of literature has scaled GPs with exact inference
via matrix vector matrix multiplications (MVM) which has recently gained
renewed interest among the community. These approaches initially used
structure in data using a structured kernel matrix with data lying in a
regularly spaced grid [ , 1. More recently there has
been significant success in applying MVMs to more general setting with
the help of recent innovations such as distributed Cholesky factorization,
faster estimation of log determinant [ , 1, GPU acceleration
and preconditioned conjugate gradients [ , , ,
1.

Other inference methods like expectation propagation [ , 1
and MCMC [ , ] have also been extended to be used
with sparse GPs, variational inference has emerged as the most popular
inference technique mainly because of its black box style optimization char-
acter and compatibility with gradient utilising auto-diff based frameworks
like TensorFlow and PyTorch.

Other noteworthy approaches include mixture of expert models and
distributed computations [ ], kernel expansions

[ ] and basis function decomposition [ ,
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I

3.3.1 Opper’s variational Gaussian process approximation

This section provides a summary of the variational method proposed by
[ 1, which solves the intractability due to non

Gaussian likelihoods and when used along with the variational inducing
point framework has served as the basis for modern stochastic variational
Gaussian process methods (SVGP) [ , ,a]. These meth-
ods have helped to scale GP models for large data classification. In GP
context, research on VI has mostly sought algorithms which minimise
the exclusive KL divergence Dexclusive KL, = KL(q(F)||p(F|Y)) The exclusive
KL penalises heavily the regions where the target probability density is
low, which has the effect that the probability mass of the approximation
concentrates around one of the modes of the target. The approximating
distribution is a multivariate normal distribution N(F|m, S) where m, S
are the variational parameters.

For the posterior : p(F|Y) = 2 1%’,1;) =2 (Y;g)(’)'(F) , The Exclusive KL
divergence is given as:

KL(q(F)|[F[Y) = /q(F) log pE]]g‘F‘)(_)dF :logp(Y)+/q(F)log p(q];(‘i){)dF

After some elementary manipulations, this can be written as

logp(Y) = /CI(F) log p(Y|F)dF — KL(q(F)||p(F)) + KL(q(F)||p(F|Y)).

After some basic manipulations, we arrive as the inequality is the evi-
dence lower bound (ELBO) for GP models and a new formulation to the one
we saw in the previous chapter. This form of the bound is the one generally
used in variational Gaussian process models, this is equivalent to the
importance sampling flavoured ELBO formulation given in the previous
chapter:

logp(Y) > / q(F)[logp(Y,F) — log q(F)]dF

The first term in the integral can be seen as encouraging variational pa-
rameters that give high density to configuration of latent variables which
can explain the observations Y better . The second term encourages varia-
tional parameters which give rise to higher entropy distributions so that
the distribution spreads its mass across many configurations [

, 1. The variational parameters are obtained by maximising the
ELBO as formulated in [ 1. For a factorised
likelihood p(Y|F) = [[;_, p(v:|fi), the lower bound denoted by L can be
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written as

1 1
£(q) = 5Tr(Ky8) + ;m Kjjm - o log\S\-i—logZ—gln(%re)

n

- Z/ ) log p(yil f:)dF

It is important to note that in the last term each of the term in the sum:
| q(F)log p(y;| fi)dF depends only on the corresponding variational parame-
ters: m; and S;;. Applying another identity: S~ = —2VsEqr) {log p(Y’F)}
makes the optimal covariance matrix available to us as

S = (K;j+p0)""

where 3 € R™*! is a vector. This formulation uses only 2N variational
parameters N for mean m and N for covariance matrix S, while the naive
implementation requires N (NN + 3)/2 variational parameters. This is a
major gain in terms of computation and space complexity. The variational
parameters are optimised by gradient descent (not SGD!). The reduced
number of variational parameters means higher chance of avoiding local
minima. This is the formulation which is used in Publication II and while
the likelihood is not factorised, we used both a full rank matrix and the
above parameterisation.

3.3.2 Sparse GP

The cubic complexity of GPs limits their application to problems with
N =~ 10000. The main computational bottleneck happens due to covariance
matrix inversion. To overcome these scalablity challenges, sparse approx-
imations have been proposed in the literature [ 1,

[ ] which reduce the computational cost to
O(NM?) where M < N. The idea is to augment the probability space with
M points of auxiliary(inducing) input/output pairs of variables Z(which
lie in the same space as X) and U (which lie in the same space as F). The
original covariance matrix Ky with rank N is then replaced by a low
rank approximation K, alleviating the computation cost of inverting the
original matrix by inversion of a smaller matrix O(M?). the way K is ap-
proximated is what distinguishes these methods from each other. The most
popular and prominent methods are Deterministic training conditional

(DTO) [ , 1, fully independent and training conditional
(FITC) [ , ] and the variational sparse GP
approach of [ ] which was further extended by

[ , land [ ] using further innovation of conjugate
gradients.
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[ ] and later [ 1
made a comprehensive summary and unification of all the methods under
sparse approximations.

The new problem is then to define a good approximation and find good
inducing point locations Z. A common way to select the location is to
optimise the inducing point location as done by
[ ]. Optimising so many new hyper-parameters can make us prone to
overfitting. Another problem with these sparse approaches is that they
modify the model, are non rigorous since the objective used in place of log
marginal likelihood to optimise hyperparameters and inducing points/loca-
tions is an approximation having no theoretical guarantees, which can lead
to severe overfitting. All these issues are resolved by the sparse variational
Gaussian process models.

3.3.3 Sparse variational Gaussian process

This section summarises the variational sparse Gaussian process approach.
SVGP models minimise the exclusive KL divergence between the approxi-
mation and joint posterior over F, U: KL(¢(F)||p(F,U|Y)). The key idea
here is to replace the true posterior p(F|Y,U)p(U|Y) with the approxima-
tion having a specific factorisation: ¢(F) = p(F|U)q(U). This factorisation
helps to obtain the following variational bound

p(Y) > L(q) = /Q(U) [p(FIU) log p(Y|F)dF |dU — KL(q(U)||p(U)).

This is the new sparse variational ELBO, maximising this quantity wrt
variational parameters brings the variational posterior close to the true
joint posterior. Other hyper parameters such as length scale, noise variance
are also optimised using this quantity. This is more principled way than
the approaches discussed earlier since the risk of overfitting is significantly
reduced as we are optimising a lower bound of the true log marginal likeli-
hood as a result of which this is the default sparse variational Gaussian
process approach for modern GP libraries.
If the likelihood factorises this can be further simplified to

N
£l@) = [ aO)[Y [ p(10) logp(ul )] U ~ KL(a(V) (V).
=1

To find the optimal variational distribution ¢(U), Titsias differentiated
the above bound with respect to ¢(U). The optimal distribution also turns
out to be a Gaussian

1 _ 1 _

By placing this distribution in the above bound and performing the
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integration the variational lower bound becomes
_ 1
log p(y|F) > log N (Y0, K s, K 'K, + o°T) — ﬁtr(Kff — K Kuy).

The above bound has complexity O(NM? 4 M?3), since M < N, the first

term is the dominant one. As we discussed earlier, the other method in vari-

ational distribution is to fix the form of the variational approximation as a

Gaussian and then optimise its parameters. This kind of model inspired

by [ ] came to be known as SVI GP [ ,
] which was later extended for non-Gaussian likelihoods by

[ 1

3.4 Bayesian optimization

Bayesian optimization is a technique for finding the optimal input for an
unknown function that is expensive to evaluate. It is closely tied to the
popular exploration vs exploitation dilemma.

Expensive evaluation means that a clever strategy has to be made to
know to make decisions based on the unknown function with a limited
computation budget. This is done in a sequential manner using the in-
formation gained from past analysis to determine where to evaluate the
function next. The unknown function, also known as the black box func-
tion is modelled using a Bayesian surrogate model, which in turn is then
input to an ’acquisition function’ which decides where the function has
to be evaluated. The first use cases emerged due to a need to efficiently
design experiments and systems. Now, BO has been applied to many use
cases from a diverse set of fields like product design of material and drugs,
finding new materials and molecules and in hyperparameter optimization
of machine learning [ , ] and deep learning algorithms
[ , 1. A more thorough and introductory tutorial is given by

[ 1.

Here I introduce the key concepts in BO so that we can explain in detail
our contributions later. Let X be the input space and f : X — R be a
continuous and expensive to evaluate black-box function. BO finds the
minimum X,;, of this unknown function :

Xmin = argminxéZf(X)a

where Z € X is the feasible optimization space. The key idea in BO is to
transform this optimization problem into a sequence of decision problems
of where to evaluate the function next . This is done with the help of
an acquistion function: a : X — R that uses the posterior distribution of
the latent function to score how useful an observation associated to input
z;M,is. BO can be seen as an iterative algorithm with the following steps:
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1) Fit a GP model to the available observations 2) Observe the black-box
function at the maximum point of the acquisition function, 3) Repeat steps
1 and 2 until the stopping criterion is not met.

A prespecified number of function evaluations also referred to as compu-
tational budget is a common stopping criterion.

3.4.1 Gaussian Process with comparative observation models

In literature, the most common likelihood function p(Y'|F') we observe is
factorised where each observation y; is independent of all other latent
functions f; when conditioned on the latent function value f;. One such
case where this is not followed is preferential Bayesian optimization, where
the observation model takes into account the ordering of two noisy latent
function values at two input locations. This can be formulated as :D’ =
1,i15yi2. The likelihood when assuming Gaussian corruption in y is given

Yy
as,

PD'E0%) = [ [ 1y00aN S, DN (072, 0%) gy

— o@D - 1)f<m“)\/—§:(w“2)>7

This likelihood is the central idea for Publication II. Publication I also
uses a similar comparison, but it is between the function evaluations of

two independent Gaussian process.

3.4.2 Preferential batch Bayesian optimization

In some cases, the requirement might be to select multiple evaluation in-
puts with the acquisition function. This situation arises if each observation
is related to multiple inputs or if multiple observations are made for a
single query.

If we have a batch of input locations: x;—; and a set of observations
D € N™*2 such that yp, , < yp,,.i € [1,--- ,m], the likelihood of observing
Dis

p(DIf) = / /HlyDzl<yDzz><HNyk‘fk7 )dy1 dyp-

Publication II also proposes three acquisition functions which can be
applied in this setting a) Batch Expected improvement (q-EI), b) batch
Thompson sampling which is equivalent to regular Thompson sampling
performed B times sequentially where B is the size of the batch and ¢) sum
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of variances (SV), which is given by:

> Var(p(yi < y,Vi # §)) = (Ef[p(yz < y;vi,j)] — Erlp(yi < ij,j)])-
i=1 =1

(3.3)

3.5 Gaussian process libraries

There are many existing publically available Gaussian Process libraries
differing in their objectives and focus on inference schemes. GPStuff [

, 1, GPML(MATLAB) [ , 1,
INLAR) [ , ] were written in the first decade of this century.
The Python package [ ] with its object oriented design

made GP models available to a larger audience. It is written in Python
and had a substantial impact on the later packages. Publication II uses
GPy to implement the main algorithm. GPFlow [ ,

1 and GPyTorch [ , ] are the modern GP libraries
using variational inference as the main approximation method and using
auto differentiation to overcome challenges of non-conjugacy and speed.
Publication I uses GPFlow to get baseline results. MXFusion [ ,

] used in Publication I and Stan [ , ] used in publication
I1, II1, IV are general purpose auto-diff using probabilistic programming
frameworks using VI and HMC as the main approximation methods re-
spectively. While GPFlow and GPytorch contain useful computation tricks
to make GP computations fast, it is easier and natural to use different
priors and marginalisation of hyper-parameters in Stan.
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4. Summary of Contributions

4.1 Publication 1

A number of researchers are working to increase the performance of Gaus-
sian process models performance beyond neural networks for different
tasks. The cubic complexity in inference for Gaussian processes is a major
challenge in achieving this objective. Extreme classification is an emerging
field in machine learning where the number of classes can be very high.
A standard approach in multi-class classification with GP models is to
have one latent function for each class, and having all the latent functions
coupled by the softmax link function which produces probabilities over the
classes. This makes the complexity as O(K N?), prohibiting application of
Gaussian process to this task for number of classes, K > 10 and number
of training points, N > 1000. This work proposes several likelihood ap-
proximations of the common link functions such as softmax, logit functions
which were proposed in context of linear models [ , ] combin-
ing with the well known variational inducing point framework given by

[ 1, [ ] to obtain a tractable lower bound
on the marginal likelihood that is a sum over both data points and classes.
This essentially means that at each step in optimization, the objective
and gradients can be computed approximately after drawing samples over
data points and the negative classes (all the classes except the true class).
This helps to scale Gaussian process models for extreme classification for
datasets where the number of classes is as large as 355 and N =~ 13000 in
the EUR-lex dataset, a dataset where legal documents are classified into
multiple legal concepts or categories. This means a combined three order
of magnitude improvement. The results show that the GP models give
higher test set accuracy compared to linear models using the same like-
lihood approximations and other GP stochastic likelihood functions. The
approximation introduces some extra latent variables in the model (one
per datapoint), whose inference is intractable, which makes us propose
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amortized variational inference algorithms to solve for these parameters
in addition to the variational parameters like inducing point values, their
locations with the help of auto-differentiation framework.

4.2 Publication 2

When modelling human preferences, recommender systems, A/B testing,
it is often observed that the human subjects do not give a score or have a
hard time in assigning a numerical score to the choices he or she is looking
into. It is easier for them to rank them or make a one-to-one (pairwise)
comparisons. This type of feedback is known as preferential feedback which
has not received as much attention as the direct feedback methods. This
work presents a framework called preferential batch Bayesian optimization
(PBBO) that finds the optimum of a latent function of interest, given any
type of preferential feedback for a group of two or more choices.

The latent function is modelled by a GP. The posterior is intractable
and is approximated with EP and MCMC. VI can also be applied if it is
possible to query the batch winner i.e. the member with the smallest value

in the batch, the likelihood reduces to that of one-vs-each [ , 1
and a direct treatment of variational inference, as given by
[ ] becomes possible. This work used two different param-

eterizations of the Gaussian approximation, one having a factorial form
(diagonal covariance matrix) and the other having a full rank covariance
matrix. The full rank parameterization was able to capture the uncertainty
better and performed as good as the EP approach while being more stable
and fast than the other two techniques. This paper also proposes three
acquisition functions which can be applied in this setting.

We found out, that the value of batch-size does not significantly affect the
optimization performance when measuring the performance as a function
of total number of points associated to the observations. The framework is
applied to the problem of finding the best ingredients for sushi and best
candy based on ratings given by users.

4.3 Publication 3

This publications results and conclusions are useful for applications which
require accurate posterior estimates. In this publication, we first discuss
the challenges related to obtaining a variational approximation using
stochastic optimization methods. We show that black box VI can fail even
when the true posterior lies in the same family as the approximation due
to sub-optimal stochastic optimization. The stochasticity comes from one
of the two/both sources: a) mini-batching b) evaluation of objective and

60



Summary of Contributions

gradients using Monte Carlo draws. We give an algorithm which makes
the stochastic optimization more robust and accurate, where the choice
of divergence to be minimised is the exclusive KL divergence. The key
observation made in this publication is to view the optimization trajectory
using SGD as a Markov chain. Though the theory holds strictly for SGD
algorithm, it should also work for adaptive gradient based optimisers
like ADAGRAD, RMSPROP etc. as long as the iterates have a small
historical dependence so that departure from Markov property is not
significant. This make us available a lot of diagnostic tools which have
been so rigorously tried and tested in the MCMC diagnostics literature
since 1990s namely: R for diagnosing convergence, effective sample size for
obtaining independent draws, autocorrelation and Monte Carlo standard
error (MCSE). We then use iterate averaging after detecting convergence
to obtain a robust estimate of the quantity of interest. We recommend
running many optimizers in parallel, the same way as MCMC and then
combining the results. 'when to stop reliably’ is a crucial question for
the success of stochastic optimization in BBVI. This is really important
when we want highly accurate posterior estimates. We also observed
that analysing the optimizer behaviour is informative of the shape of the
posterior and can guide the user towards models which are computationally
easier to approximate.

The better accuracy and robustness in posterior estimates should be
reflected in the way that the obtained variational distribution should have
its moments closer to the one obtained using HMC taken to be the gold
standard. The results are also analysed by comparing the tail index of
the estimate. An approximation which covers the whole posterior mass in
the space will results in bounded density ratios leading to the tail index
being very small (or even negative). We also use the expected log predictive
density (ELPD) as a metric to evaluate the proposed algorithm. However
using this metric alone is also not a guarantee that the estimate is better,
since a poorer approximation of the true posterior can still give better
predictive results due to model-misspecification.

4.4 Publication 4

In black box VI, the user is required to make many choices such as: diver-
gence measure(variational objective), approximating family, and the choice
of stochastic optimiser(and related hyperparameters). This work focuses
on the first two parts.

We show in this paper it is possible to use the Pareto-k diagnostic from
the importance sampling literature to evaluate if the estimation of different
divergence objectives and their gradients with MC draws are even reliable
or not. This diagnostic index then helps us to evaluate and analyse if
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the black box VI procedure with the particular divergence and family
choice has failed or not. If it has, then we can change our choices or even
reparameterize the model.

This is important since BBVI assumes that replacing the integrals with
average over finite MC samples follows the central limit theorem. However,
we show that in practice this is not the case since BBVI operates in pre-
asymptotic regimes and the CLT never really kicks in for problems with
high dimensional and difficult highly non-Gaussian posteriors. We focus
on the density ratios, which can also be interpreted as importance weights,
evaluated at MC draws. When there is a mismatch between the true
posterior density and variational density, the distribution over density
ratio is heavily skewed to the right. Because of the heavy right skew, most
of the mass of w(#) is below its mean.

We show that even increasing the sample size is not going to help since
the sample size which is required for a reliable estimate is too large and
practically unfeasible for contemporary computers. For example, when the
requirement is 10'? samples, raising the sample size say from 100 to 10° is
not going to help.

While this can already be encountered in low dimensions with poste-
riors which are hard to approximate with Gaussian, an example being
the eight schools model with the funnel shape posterior [ , ,

, ]. This problem becomes more common when the
dimensionality of the posterior increases due to curse of dimensionality. It
has been suggested to use a multivariate ¢ distribution with a small degree
of freedom as the proposal density in literature, to make the density ratios
bounded. We show empirically this only works practically for D < 10, since
otherwise the bound on the weights is so large, that it can be treated as
infinite for all practical reasons. The work finally suggests to use exclu-
sive KL divergence objective as its estimation is the most reliable in high
dimensional models.
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5. Discussion

5.1 Recent Research by Others

The publications I-II in this thesis shows application of SVI and VI for
Gaussian Process models for extreme classification

[ ] have also proposed an approach similar to the
one in Publication I where they introduce a new likelihood function to
tackle the problem of evaluating the denominator of softmax function. The
intractable sum in the denominator is replaced by an integral comprising
an additional latent variable per datapoint. Some further augmented
variables are introduced in a way such that the model is conditionally con-
jugate and the updates of variational parameters are closed-form, resulting
in a fast and stable algorithm. Compared to the likelihood augmentations
introduced by [ ] used in Publication I, the number of varia-
tional parameters per datapoint are more but the model being conditionally
conjugate allows coordinate ascent style optimization (CAVI), which is not
the case for Augment and Reduce likelihood.

Publication III addresses the problem of detecting convergence in stochas-
tic VI algorithms and gave several diagnostics for detecting optimization
issues. In some relatively recent work, the algorithms SASA [ ,

] and SASA+ [ ] have been recently proposed for
detecting convergence in training of neural networks, the optimization
for which is highly non-convex. It will be interesting to compare these
methods with the one given by us.

A natural follow-up will be to visually investigate the landscape of ELBO
and looking at its geometry in a similar way, as has been done for neural

network landscape recently [ , , , 1.
[ ] have done some preliminary research into this topic,

but it deserves more thorough investigation.
Some recent work by [ ] has shown that mini-

mization of o divergence using unbiased gradient becomes more challeng-
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ing as dimensions increase due to extremely high variance.
[ ] show some empirical results of minimizing « divergence
with biased gradient estimators and summarise their findings as

* In high dimensions, an impractically large amount of computation
in the form of MC draws is needed to mitigate this bias and obtain
solutions that actually minimize the a-divergence.

* Solutions returned by algorithms using biased gradient estimators
appear to be strongly biased towards minimizers of the traditional
“exclusive” KL-divergence, KL(q||p).

Our work in Publication IV supports these findings, and also shows how
the severe underestimation of density ratio with Monte Carlo estimate
biases the algorithm towards solution of exclusive KL, conjectured in the
second point above.

5.2 Limitations and recommendations for future research

For Publication I, the work did not cover extreme multi-label classification,
where a data point can have multiple classes as output. Latest state of
the art work in deep 1 earning and non-probabilistic methods can scale to
500K labels. In order to scale Bayesian methods to that scale will require
distributed storage and algorithms and learning representations

A limitation for work carried out in II is that the datasets used were low
dimensional, it is then a natural next step to scale the framework to higher
dimensions. Using some ideas from some recent work such as [

, 1 could be helpful. The work also only focussed on the batch
winner case, extending to other types of feedbacks can also be useful and
almost straightforward to extend in the current framework.

VI has many benefits over other inference schemes like MCMC and EP,
which explains its increased popularity in recent years, as illustrated in
I-II. VI has made possible to use complicated models like Bayesian neural
networks (BNN) on large datasets because of its speed, scalability, and
good theoretical properties. However, the current practices have many
potential pitfalls, which need to be guarded against and kept into account
by the user. We hope, Publications ITI-IV will be a step in this direction,
as there is a lot of scope for improving these approaches and introducing
more checks and diagnostics for confident use of these powerful techniques.
In Publication III, we propose to look at the distribution of the iterates
and estimate the tail-index as tool to diagnose convergence for stochastic
optimisation in VI. However, this procedure can be computationally tedious
to scale for very high dimensional problems, since & has to be estimated
for each dimension. It will be interesting to benchmark the performance
of other multivariate tail index estimators [ , ] for
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this problem. Although the experiments in Publication IV, included a
range of common statistical model types, the findings may not generalize
to all types of posteriors or to other variational families like semi-implicit
variational distribution.

5.3 Practical implications

While Publication I has suggested new ideas for applying GP models to
extreme classification problems. Publication II proposes a new method
for doing Bayesian optimization with preferential feedback. Publication
ITI-IV are useful to BBVI users. Publication III proposes a new robust
algorithm for carrying out BBVI which should lead to a solution closer to
optimum than the current algorithm or at least warns about non-reliable
stochastic optimization. The users can then either reparameterise the
model (c.f. eight school model) or change the optimization schedule. As
discussed earlier, probabilistic programming will massively benefit from
improved and robust inference algorithms. This will increase the user’s
trust in the workflow, making her free to make any modelling choices.

Publication III shows how to extend the tail index diagnostic (k) to assess
if the MC approximations to different divergence objectives are reliable
and help the end users to select a divergence metric in combination with
an approximating family. The work done in publication III and IV has
inspired further research recently [ , 1 where the
authors build on the indeas introduced and propose an even more robust
and adaptive algorithm.

The algorithm for robust stochastic optimization should be used to make
the whole Bayesian workflow robust [ 1.

65






References

Shun-ichi Amari. Natural Gradient Works Efficiently in Learning. Neu-
ral Computation, 10(2):251-276, 02 1998. ISSN 0899-7667. doi: 10.1162/
089976698300017746.

Matthew J. Beal. Variational Algorithms for Approximate Bayesian Inference.
PhD thesis, University College London, 2003.

Michael Betancourt. A conceptual introduction to hamiltonian monte carlo, 2018.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj
Pradhan, Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall,
and Noah D. Goodman. Pyro: Deep universal probabilistic programming. <J.
Mach. Learn. Res., 20:28:1-28:6, 2019.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A
review for statisticians. Journal of the American Statistical Association, 112
(518):859-8717, 2017.

Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson, and
Michael I. Jordan. Streaming variational bayes. In In NIPS, 2013.

Thang D. Bui, Josiah Yan, and Richard E. Turner. A unifying framework for gaus-
sian process pseudo-point approximations using power expectation propagation.
volume 18, pages 3649-3720, 2017.

Paul C. Burkner, Jonah Gabry, M. Kay, and Aki Vehtari. posterior: Tools for
Working with Posterior Distributions., 2020. R package version 1.5-0.

Edward Challis and David Barber. Gaussian kullback-leibler approximate infer-
ence. Journal of Machine Learning Research, 14(32):2239-2286, 2013.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley
Series in Telecommunications and Signal Processing). Wiley-Interscience, USA,
2006. ISBN 0471241954.

R. T. Cox. Probability, frequency and reasonable expectation. American Journal
of Physics, 14(1), 1946.

Zhenwen Dai, Eric Meissner, and Neil D. Lawrence. Modular deep probabilistic
programming. In International Conference on Learning Representations, 2019.

Andreas Damianou. Deep gaussian processes and variational propagation of
uncertainty. PhD Thesis, University of Sheffield, 2015.

67



References

Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke Fujii,
Alexis Boukouvalas, Pablo Leén-Villagra, Zoubin Ghahramani, and James
Hensman. Gpflow: A Gaussian process library using tensorflow. volume 18,
pages 1-6, 2017.

L. De Haan and L. Peng. Comparison of tail index estimators. Statistica Neer-
landica, 52(1):60-70, 1998.

Marc Deisenroth and Jun Wei Ng. Distributed gaussian processes. In Francis
Bach and David Blei, editors, Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pages 1481-1490, Lille, France, 07-09 Jul 2015. PMLR.

Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and
data-efficient approach to policy search. In Proceedings of the 28th International
Conference on International Conference on Machine Learning, ICML'11, page
465-472, Madison, WI, USA, 2011. Omnipress. ISBN 9781450306195.

A.P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society B, 39:1-38,
19717.

Akash Kumar Dhaka, Alejandro Catalina, Manushi Welandawe, Michael Riis
Andersen, Jonathan Huggins, and Aki Vehtari. Challenges and opportunities
in high-dimensional variational inference. 2021.

Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, and David Blei.
Variational inference via \chi upper bound minimization. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 2732—
2741. Curran Associates, Inc., 2017.

Aymeric Dieuleveut, Alain Durmus, and F Bach. Bridging the Gap between
Constant Step Size Stochastic Gradient Descent and Markov Chains. The
Annals of Statistics, 48(3):1348-1382, 2020.

Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasude-
van, Dave Moore, Brian Patton, Alex Alemi, Matthew D. Hoffman, and Rif A.
Saurous. Tensorflow distributions. CoRR, abs/1711.10604, 2017.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using
real nvp. In International Conference on Learning Representations, 2017.

Justin Domke. Provable smoothness guarantees for black-box variational in-
ference. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 2587-2596. PMLR, 13-18 Jul 2020.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Es-
sentially no barriers in neural network energy landscape. In Jennifer Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 1309-1318. PMLR, 10-15 Jul 2018.

Gideon Dresdner, Saurav Shekhar, Fabian Pedregosa, Francesco Locatello, and
Gunnar Ratsch. Boosting variational inference with locally adaptive step-sizes.
2021.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for

online learning and stochastic optimization. J Mach. Learn. Res., 12:2121-2159,
July 2011. ISSN 1532-4435.

68



References

Carl Henrik Ek. Gaussian process latent variable models for human pose es-
timation. In In 4th Joint Workshop on Multimodal Interaction and Related
Machine Learning Algorithms (MLMI 2007), volume LNCS 4892, pages 132—
143. Springer-Verlag, 2007.

Ilenia Epifani, Steven N MacEachern, and Mario Peruggia. Case-deletion im-
portance sampling estimators: Central limit theorems and related results.
Electronic Journal of Statistics, 2:774-806, 2008.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg,
Manuel Blum, and Frank Hutter. Efficient and robust automated machine
learning. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 28. Curran
Associates, Inc., 2015.

Roger Frigola, Yutian Chen, and Carl Edward Rasmussen. Variational gaus-
sian process state-space models. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 27. Curran Associates, Inc., 2014.

Théo Galy-Fajou, Florian Wenzel, Christian Donner, and Manfred Opper. Multi-
class gaussian process classification made conjugate: Efficient inference via
data augmentation. In Ryan P. Adams and Vibhav Gogate, editors, Proceedings
of The 35th Uncertainty in Artificial Intelligence Conference, volume 115 of
Proceedings of Machine Learning Research, pages 755-765. PMLR, 22—-25 Jul
2020.

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G
Wilson. Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu
acceleration. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and An-
drew G Wilson. Loss surfaces, mode connectivity, and fast ensembling of dnns.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems 31,
pages 8789-8798. Curran Associates, Inc., 2018.

Tomas Geffner and Justin Domke. Empirical evaluation of biased methods for
alpha divergence minimization. In Symposium on Advances in Approximate
Bayesian Inference, AABI 2020, 2020a.

Tomas Geffner and Justin Domke. On the difficulty of unbiased alpha divergence
minimization. In ICML 21, 2020b.

Izrail Moiseevitch Gelfand, Richard A Silverman, et al. Calculus of variations.
Courier Corporation, 2000.

Andrew Gelman, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob
Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian Biirkner,
and Martin Modrak. Bayesian workflow, 2020.

Zoubin Ghahramani. Factorial learning and the em algorithm. In Proceedings
of the 7th International Conference on Neural Information Processing Systems,
NIPS’94, page 617-624, Cambridge, MA, USA, 1994. MIT Press.

Javier Gonzalez, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. Batch
bayesian optimization via local penalization. In Arthur Gretton and Christian C.
Robert, editors, Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, volume 51 of Proceedings of Machine Learning
Research, pages 648—657, Cadiz, Spain, 09—-11 May 2016. PMLR.

69



References

Noah Goodman, Vikash Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua
Tenenbaum. Church: a language for generative models. In Proceedings of
the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, UAT'08.
AUAI Press, 2008.

Noah D Goodman and Andreas Stuhlmiiller. The Design and Implementation of
Probabilistic Programming Languages. 2014. Accessed: 2021-7-15.

GPy. GPy: A gaussian process framework in python. http://github.com/
SheffieldML/GPy, since 2012.

Fangjian Guo, Xiangyu Wang, Kai Fan, Tamara Broderick, and David B. Dunson.
Boosting variational inference. 2017.

Mert Gurbuzbalaban, Umut Simsekli, and Lingjiong Zhu. The heavy-tail phe-
nomenon in sgd. 2020.

J Hensman, A Matthews, and Z Ghahramani. Scalable Variational Gaussian
Process Classification. In AISTATS 15, volume 38 of PMLR, pages 351-360,
2015a.

J Hensman, AG Matthews, M Filippone, and Z Ghahramani. MCMC for varia-
tionally sparse Gaussian processes. In NeurIPS, pages 1648-1656, 2015b.

James Hensman, Nicolo Fusi, and Neil D. Lawrence. Gaussian processes for
big data. In Proceedings of the Twenty-Ninth Conference on Uncertainty in
Artificial Intelligence, UAT’'13, page 282—290, Arlington, Virginia, USA, 2013.
AUALI Press.

Jose Hernandez-Lobato, Yingzhen Li, Mark Rowland, Thang Bui, Daniel
Hernandez-Lobato, and Richard Turner. Black-box alpha divergence minimiza-
tion. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings
of The 33rd International Conference on Machine Learning, volume 48 of Pro-
ceedings of Machine Learning Research, pages 1511-1520. PMLR, 20-22 Jun
2016.

Bruce M. Hill. A Simple General Approach to Inference About the Tail of a
Distribution. The Annals of Statistics, 3(5):1163 — 1174, 1975.

G. E. Hinton and Tijmen Tieleman. Lecture 6.5 — Rmsprop: Divide the gradient
by a running average of its recent magnitude. In Coursera: Neural networks
for machine learning, 2012.

Matthew D. Hoffman and Andrew Gelman. The no-u-turn sampler: Adaptively
setting path lengths in hamiltonian monte carlo, 2011.

Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic
variational inference. volume 14, pages 1303-1347, 2013.

Antti Honkela, Tapani Raiko, Mikael Kuusela, Matti Tornio, and Juha Karhunen.
Approximate riemannian conjugate gradient learning for fixed-form variational
bayes. Journal of Machine Learning Research, 11(106):3235-3268, 2010.

Jonathan H Huggins, Mikolaj Kasprzak, Trevor Campbell, and T. Broderick. Vali-
dated Variational Inference via Practical Posterior Error Bounds. In AISTATS,
October 2019.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew
Wilson. Averaging weights leads to wider optima and better generalization.
Uncertainty in Artificial Intelligence - Proceedings, UAI 2018, 2018.

E. T. Jaynes. Probability theory: The logic of science. Cambridge University Press,
2003.

70


http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

References

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K.
Saul. An introduction to variational methods for graphical models. Mach.
Learn., 37(2):183-233, November 1999. ISSN 0885-6125.

Marko Jarvenpid, Michael Gutmann, Aki Vehtari, and Pekka Marttinen. Gaus-
sian process modeling in approximate bayesian computation to estimate hor-
izontal gene transfer in bacteria. The Annals of Applied Statistics, 12, 12
2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In ICLR, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter.
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large
Datasets. In Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, volume 54 of
Proceedings of Machine Learning Research, pages 528-536, Fort Lauderdale,
FL, USA, 20-22 Apr 2017. PMLR.

David A. Knowles and Thomas P. Minka. Non-conjugate variational message
passing for multinomial and binary regression. In Proceedings of the 24th
International Conference on Neural Information Processing Systems, NIPS’11,
page 1701-1709. Curran Associates Inc., 2011. ISBN 9781618395993.

Olli-Pekka Koistinen, Vilhjalmur Asgeirsson, AXki Vehtari, and Hannes Jénsson.
Nudged elastic band calculations accelerated with gaussian process regres-
sion based on inverse interatomic distances. Journal of Chemical Theory and
Computation, 15(12):6738—6751, 2019.

Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, and David Blei. Auto-
matic variational inference in stan. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems 28, pages 568—-576. Curran Associates, Inc., 2015.

Ravin Kumar, Colin Carroll, Ari Hartikainen, and Osvaldo Martin. Arviz a unified
library for exploratory analysis of bayesian models in python. Journal of Open
Source Software, 4(33):1143, 2019. doi: 10.21105/joss.01143.

Tomasz Ku$mierczyk, Joseph Sakaya, and Arto Klami. Variational bayesian
decision-making for continuous utilities. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

Malte Kuss and Carl Edward Rasmussen. Assessing approximate inference for
binary gaussian process classification. volume 6, pages 1679-1704, 2005.

Tomasz Kusmierczyk, Joseph Sakaya, and Arto Klami. Correcting predictions
for approximate bayesian inference. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(04):4511-4518, Apr. 2020.

Hunter Lang, Lin Xiao, and Pengchuan Zhang. Using statistics to automate
stochastic optimization. In Advances in Neural Information Processing Systems,
volume 32, pages 9540-9550, 2019.

Neil Lawrence. Gaussian process latent variable models for visualisation of high
dimensional data. In S. Thrun, L. Saul, and B. Schélkopf, editors, Advances in
Neural Information Processing Systems, volume 16. MIT Press, 2004a.

Neil D. Lawrence. Gaussian process latent variable mod- els for visualisation of
high dimensional data. In Advances in neural information processing systems,
NIPS’04, page 329-336, 2004b.

71



References

Neil D. Lawrence and Joaquin Quifionero Candela. Local distance preservation in
the gp-lvm through back constraints. In Proceedings of the 23rd International
Conference on Machine Learning, ICML 06, page 513-520, New York, NY, USA,
2006. Association for Computing Machinery. ISBN 1595933832.

Miguel Lazaro-Gredilla, Joaquin Quinonero Candela, Carl Edward Rasmussen,
and Anibal R. Figueiras-Vidal. Sparse spectrum gaussian process regression. /.
Mach. Learn. Res., 11:1865-1881, August 2010. ISSN 1532-4435.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient de-
scent with adaptive stepsizes. In Kamalika Chaudhuri and Masashi Sugiyama,
editors, Proceedings of Machine Learning Research, volume 89 of Proceedings
of Machine Learning Research, pages 983-992. PMLR, 16-18 Apr 2019.

Chiayu Lin, Andrew Gelman, Phillip Price, and David Krantz. Analysis of local
decisions using hierarchical modeling, applied to home radon measurement
and remediation. Statistical Science, 14, 08 1999.

Jarno Lintusaari, Henri Vuollekoski, Antti Kangasriasio, Kusti Skytén, Marko
Jarvenpiéd, Pekka Marttinen, Michael U. Gutmann, Aki Vehtari, Jukka Coran-
der, and Samuel Kaski. Elfi: Engine for likelihood-free inference. J. Mach.
Learn. Res., 19(1):643-649, January 2018. ISSN 1532-4435.

Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, and Gunnar Rétsch. Boosting
Variational Inference: an Optimization Perspective. In International Conference
on Artificial Intelligence and Statistics, 2018.

Stephan Mandt, Matthew D. Hoffman, and David M. Blei. Stochastic gradient
descent as approximate bayesian inference. volume 18, pages 4873—-4907.
JMLR.org, January 2017.

G. Matheron. The intrinsic random functions and their applications. Advances in
Applied Probability, 5(3):439-468, 1973.

Sean Meyn, Richard L. Tweedie, and Peter W. Glynn. Markov Chains and Stochas-
tic Stability. Cambridge Mathematical Library. Cambridge University Press, 2
edition, 2009.

Petrus Mikkola, Milica Todorovi¢, Jari Jarvi, Patrick Rinke, and Samuel Kaski.
Projective preferential bayesian optimization. In Proceedings of the 37th In-
ternational Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 6884—6892, Virtual, 13-18 Jul 2020. PMLR.

Andrew C. Miller, Nicholas J. Foti, and Ryan P. Adams. Variational boosting:
Iteratively refining posterior approximations. In Proceedings of the 34th Inter-
national Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 2420-2429. PMLR, 2017.

T. Minka, J.M. Winn, J.P. Guiver, Y. Zaykov, D. Fabian, and J. Bronskill. /Infer NET
0.3, 2018. Microsoft Research Cambridge. http:/dotnet.github.io/infer.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte
Carlo gradient estimation in machine learning. 2019.

Mohammad Mohammadi, Adel Mohammadpour, and Hiroaki Ogata. On es-
timating the tail index and the spectral measure of multivariate « -stable
distributions. Metrika, 78:549-561, 07 2015.

Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approxima-
tion algorithms for machine learning. In J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems, volume 24. Curran Associates, Inc., 2011.

72



References

Christian A Naesseth, Fredrik Lindsten, and D. M. Blei. Markovian Score Climb-
ing: Variational Inference with KL(p||q). 33, 2020.

Radford Neal. Slice sampling. The Annals of Statistics, 31:705 — 767, 2003.

Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag,
Berlin, Heidelberg, 1996. ISBN 0387947248.

Hannes Nickisch and Carl Edward Rasmussen. Approximations for Binary
Gaussian Process Classification. volume 9, pages 2035-2078, October 2008.

Victor M H Ong, David J Nott, and Michael S Smith. Gaussian Variational
Approximation With a Factor Covariance Structure. Journal of Computational
and Graphical Statistics, 27(3):465-478, 2018.

Manfred Opper and Cédric Archambeau. The variational Gaussian approximation
revisited. Neural Computation., 21(3):786—-792, March 2009. ISSN 0899-7667.

Art B. Owen. Monte Carlo theory, methods and examples. 2013.

Topi Paananen, Juho Piironen, Paul-Christian Biirkner, and Aki Vehtari. Implic-
itly adaptive importance sampling. Statistics and Computing, 31(2), Feb 2021.
ISSN 1573-1375.

Omiros Papaspiliopoulos, Gareth O. Roberts, and Martin Skold. A general frame-
work for the parametrization of hierarchical models. Statistical Science, 22(1):
59-73, 2007.

GI Parisi. Statistical Field Theory. Addison-Wesley, 1988.

C. Peterson and J. R. Anderson. A mean field theory learning algorithm for neural
networks. Complex Systems, 1:995-1019, 1987.

Dennis Prangle. Distilling importance sampling. arXiv.org, arXiv:1910.03632
[stat.CO], October 2019.

Joaquin Quiiionero Candela and Carl Edward Rasmussen. A unifying view of
sparse approximate gaussian process regression. volume 6, page 1939-1959.
JMLR, December 2005.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black Box Variational Inference.
In Samuel Kaski and Jukka Corander, editors, Proceedings of the Seventeenth
International Conference on Artificial Intelligence and Statistics, volume 33 of
Proceedings of Machine Learning Research, pages 814-822, Reykjavik, Iceland,
22-25 Apr 2014. PMLR.

Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine
learning (gpml) toolbox. J. Mach. Learn. Res., 11:3011-3015, dec 2010. ISSN
1532-4435.

CE Rasmussen and CKI Williams. Gaussian Processes for Machine Learning.
MIT Press, 1 2006. ISBN 0-262-18253-X.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing
flows. In Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pages 1530-1538.
PMLR, 2015.

H. Robbins and S. Monro. A stochastic approximation method. In The Annals of
Mathematical Statistics., 1951.

Donald B. Rubin. Estimation in parallel randomized experiments. Journal of
Educational Statistics, 6(4):377-401, 1981. ISSN 03629791.

73



References

Havard Rue, Sara Martino, and Nicholas Chopin. Models using integrated nested
Laplace approximations. Journal of the Royal Statistical Society B, 71:319-392,
2009.

FJR Ruiz, MK Titsias, AB Dieng, and DM Blei. Augment and reduce: Stochastic
inference for large categorical distributions. In ICML 18, 2018.

David Ruppert. Efficient estimations from a slowly convergent robbins-monro pro-
cess. Technical report, Cornell University Operations Research and Industrial
Engineering, 1988.

John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. Probabilistic
Programming in Python Using PyMC3. PeerJ Computer Science, 2:€55, April
2016. ISSN 2376-5992.

Masa-Aki Sato. Online model selection based on the variational bayes. Neural
Comput., 13(7):1649-1681, July 2001. ISSN 0899-7667.

Alan D. Saul, James Hensman, Aki Vehtari, and Neil D. Lawrence. Chained gaus-
sian processes. In Arthur Gretton and Christian C. Robert, editors, Proceedings
of the 19th International Conference on Artificial Intelligence and Statistics,
volume 51 of Proceedings of Machine Learning Research, pages 1431-1440,
Cadiz, Spain, 09-11 May 2016. PMLR.

Matthias W. Seeger, Christopher K. I. Williams, and Neil D. Lawrence. Fast for-
ward selection to speed up sparse gaussian process regression. In Christopher M.
Bishop and Brendan J. Frey, editors, Proceedings of the Ninth International
Workshop on Artificial Intelligence and Statistics, volume R4 of Proceedings of
Machine Learning Research, pages 254-261. PMLR, 03-06 Jan 2003. Reissued
by PMLR on 01 April 2021.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Fre-
itas. Taking the human out of the loop: A review of bayesian optimization.
Proceedings of the IEEE, 104(1):148-175, 2016.

Eero Siivola, Akash Kumar Dhaka, Michael Riis Andersen, Javier Gonzalez,
Pablo Garcia Moreno, and Aki Vehtari. Preferential batch bayesian optimiza-
tion. 2020.

Eero Siivola, Andrei Paleyes, Javier Gonzalez, and Aki Vehtari. Good practices
for bayesian optimization of high dimensional structured spaces. Applied Al
Letters, 2(2):e24, 2021.

Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A tail-index analysis of
stochastic gradient noise in deep neural networks. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 5827-5837, Long Beach, California, USA, 09-15 Jun 2019. PMLR.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using
pseudo-inputs. In Advances in neural information processing systems, NIPS'05,
page 1257-1264, Cambridge, MA, USA, 2005. MIT Press.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimiza-
tion of machine learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc., 2012.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaus-
sian process optimization in the bandit setting: No regret and experimental
design. ICML'10, page 1015-1022, Madison, WI, USA, 2010. Omnipress. ISBN
97816055890717.

74



References

Andreas Svensson, Arno Solin, Simo Sarkki, and Thomas Schon. Computationally
efficient bayesian learning of gaussian process state space models. In Arthur
Gretton and Christian C. Robert, editors, Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings
of Machine Learning Research, pages 213-221, Cadiz, Spain, 09—-11 May 2016.
PMLR.

Stan Development Team. Stan Modeling Language Users Guide and Reference
Manual,, 2021.

D. J. Thouless, P. W. Anderson, and R. G. Palmer. Solution of ’solvable model of a
spin glass’. The Philosophical Magazine: A Journal of Theoretical Experimental
and Applied Physics, 35(3):593—601, 1977.

Michalis Titsias and Miguel Lazaro-Gredilla. Doubly stochastic variational bayes
for non-conjugate inference. In Proceedings of the 31st International Conference
on Machine Learning, volume 32 of Proceedings of Machine Learning Research,
pages 1971-1979. PMLR, 2014.

MK Titsias. Variational learning of inducing variables in sparse Gaussian pro-
cesses. In AISTATS 12, 2009.

MK Titsias. One-vs-each approximation to softmax for scalable estimation of
probabilities. In NIPS, 2016.

Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of tr(f(a)) via
stochastic lanczos quadrature. volume 38, pages 1075-1099, 2017.

Jarno Vanhatalo, Jaakko Riihiméki, Jouni Hartikainen, Pasi Jyléanki, Ville Tolva-
nen, and Aki Vehtari. Gpstuff: Bayesian modeling with gaussian processes.
Journal of Machine Learning Research, 14:1175-1179, April 2013. ISSN 1532-
4435,

Aki Vehtari, Tommi Mononen, Ville Tolvanen, Tuomas Sivula, and Ole Winther.
Bayesian leave-one-out cross-validation approximations for Gaussian latent
variable models. JMLR, 17(1):3581-3618, January 2016. ISSN 1532-4435.

AKki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian

Biirkner. Rank-normalization, folding, and localization: An improved R for
assessing convergence of MCMC. arXiv preprint arXiv:1903.08008, 2019a.

Aki Vehtari, Daniel Simpson, Andrew Gelman, Yao Yuling, and Jonah Gabry.
Pareto smoothed importance sampling. arXiv preprint arXiv:1507.02646, 2019b.

Dilin Wang, Hao Liu, and Qiang Liu. Variational inference with tail-adaptive
f-divergence. In Advances in Neural Information Processing Systems, volume 31,
pages 5737-5747, 2018.

Ke Wang, Geoff Pleiss, Jacob Gardner, Stephen Tyree, Kilian Q Weinberger, and
Andrew Gordon Wilson. Exact gaussian processes on a million data points.
In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Manushi Welandawe, Michael Riis Andersen, Aki Vehtari, and Jonathan H.
Huggins. Robust, automated, and accurate black-box variational inference,
2022.

N. Wiener. Extrapolation, interpolation, and smoothing of stationary time series.
1949.

Andrew Gordon Wilson and Hannes Nickisch. Kernel interpolation for scalable
structured gaussian processes (kiss-gp). In Proceedings of the 32nd Interna-
tional Conference on International Conference on Machine Learning - Volume
37, ICML'15, page 1775-1784. JMLR, 2015.

75



References

John Winn and Christopher M. Bishop. Variational message passing. Journal of
Machine Learning Research, 6, 2005.

Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. A new approach
to probabilistic programming inference. In Proceedings of the 17th International
conference on Artificial Intelligence and Statistics, pages 1024-1032, 2014.

Sho Yaida. Fluctuation-dissipation relations for stochastic gradient descent. In
International Conference on Learning Representations (ICLR), 2019.

Zichao Yang, Andrew Wilson, Alex Smola, and Le Song. A la Carte — Learning Fast
Kernels. In Guy Lebanon and S. V. N. Vishwanathan, editors, Proceedings of
the Eighteenth International Conference on Artificial Intelligence and Statistics,
volume 38 of Proceedings of Machine Learning Research, pages 1098-1106, San
Diego, California, USA, 09-12 May 2015. PMLR.

Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman. Yes, but did it
work?: Evaluating variational inference. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 5581-5590,
Stockholmsmaéissan, Stockholm Sweden, 10-15 Jul 2018. PMLR.

Edith Zhang and David Blei. Unveiling mode-connectivity of the elbo landscape.
In Workshop on Bayesian Deep Learning, NeurIPS 2021, 2021.

Pengchuan Zhang, Hunter Lang, Qiang Liu, and Lin Xiao. Statistical adaptive
stochastic gradient methods, 2020.

76



Publication |

Akash Kumar Dhaka, Michael Riis Andersen, Pablo Garcia Moreno, Aki
Vehtari. Scalable Gaussian Process for Extreme Classification. The In-
ternational Workshop on Machine Learning for Signal Processing MLSP ,

Espoo, Finland, pages 1-6, October 2020.

© 2020 IEEE Xplore.

Reprinted with permission.

77






2020 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 21-24, 2020, ESPOO, FINLAND

SCALABLE GAUSSIAN PROCESS FOR EXTREME CLASSIFICATION

Akash Kumar Dhaka', Michael Riis Andersen?, Pablo Garcia Moreno®, Aki Vehtari

! Aalto University, Dept. of Computer Science, > DTU Compute, Technical University of Denmark
3 Amazon.com

ABSTRACT

We address the limitations of Gaussian processes for multiclass
classification in the setting where both the number of classes
and the number of observations is very large. We propose a
scalable approximate inference framework by combining the
inducing points method with variational approximations of
the likelihood that have been recently proposed in the litera-
ture. This leads to a tractable lower bound on the marginal
likelihood that decomposes into a sum over both data points
and class labels, and hence, is amenable to doubly stochastic
optimization. To overcome memory issues when dealing with
large datasets, we resort to amortized inference, which coupled
with subsampling over classes reduces the computational and
the memory footprint without a significant loss in performance.
We demonstrate empirically that the proposed algorithm leads
to superior performance in terms of test accuracy, and im-
proved detection of tail labels.

Index Terms— Gaussian process classification, varia-
tional inference, augmented model.

1. INTRODUCTION

Multiclass classification refers to the supervised learning prob-
lem where each instance is labelled with a value chosen from
a discrete set with cardinality K > 2. The goal of multiclass
classification is to learn a mapping from an input space to
the set of labels based on a set of input-output pairs (X, yn ),
where x,, € R and ,, € {1,2, ..., K}. Extreme classifica-
tion (EC) [1, 2] deals with the complexity introduced when
the number of classes K is extremely large so that evaluation
of the likelihood becomes prohibitively expensive using stan-
dard inference techniques. For example, consider the softmax
function which maps K function values to a probability vector,

ply = clf) = o2

D eXP(fi)’

where £ = [f1,..., fi] is a vector of scores for each class for
a given observation. Evaluating Eq. (1) and its gradients scales
linearly with K. For very large data sets, this motivates the
search for sub-linear, efficient, and accurate approximations.

ey
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Besides the computational challenges, the statistical chal-
lenges include 1) the average number of observations per class,
N/K is small, 2) sparse data for a subset of classes, and 3)
class imbalance in general. Bayesian methods in the setting
where K is large, have received less attention than standard
multi-class classification. Recently, Bayesian inference algo-
rithms for extreme classification have been proposed for linear
models [3, 4, 5].

While linear models have been shown to scale to very
big data sets, non-linear models such as Gaussian processes
(GPs) [6] can provide better performance by modeling non-
linearities and covariate interactions. In the context of multi-
class classification, imposing GP priors on each score function,
fifori =1,..., K, allows modelling complex and non-linear
dependencies in a probabilistic framework. Naive computa-
tions for GPs scale cubically with number of data points N,
and for K'-class GP classification the computation scales as
O(K N3). This makes it computationally non-trivial to apply
GPs to scenarios where K is large.

There has been extensive work on how to reduce the com-
putational cost arising due to large N, including sparse GPs
using the inducing points framework [7, 8]. This reduces the
computational cost per GP to O(BM? + M?3), where M is
the number of inducing points and B is the mini-batch size.

We propose a scalable GP framework for extreme clas-
sification by combining sparse GPs with recently proposed
variational approximations of the likelihood terms. In particu-
lar, we study two different approximations: the One-vs-Each
(OVE) approximation [4] and the augment and reduce (AR)
approximation [5]. This allows us to approximate the likeli-
hood and gradient for each observation using a small subset
of the (K — 1) negative classes such that the resulting cost
will be independent of K. While AR offers better empirical
performance than OVE, it introduces a set of local variational
parameters for each observation. Since the number of varia-
tional parameters scales with [V, the memory footprint can be
prohibitively large for large datasets. We resolve this issue us-
ing amortized inference, where a neural network (NN) learns
a mapping from the input space to the variational parameters.
The NN is learnt jointly with the hyperparameters of the GP.
We show that this solution does not degrade the performance
of the AR approximation, but it keeps the memory footprint



constant with respect to /V. In addition, the optimisation prob-
lem is simplified as we tie up local parameters. Overall, this
variational approximation performs better than previous GP
approaches in literature on 4 out of 5 datasets in terms of accu-
racy and coverage. Finally, we share insights into how these
likelihoods are related to each other.

1.1. Related Work

Relevant work on multiclass classification include [9, 10].
[10] use expectation propagation (EP) and an OVE-style bound
that uses the probit function instead of the logistic function.
EP is a fixed point algorithm which is hard to scale when the
number of outcomes is large (in contrast to SVI). It does not
offer a bound on the marginal likelihood, and it can suffer from
convergence issues. Earlier variational approximations using
augmented variables [11, 12] lack scalability. Sampling the
latent function as done in [13] is not scalable for large K.

2. BACKGROUND

2.1. Gaussian processes for classification

GPs provide a principled way of imposing prior distributions
over function spaces. We consider the problem where we have
D-dimensional input vectors x,, € RP associated with target
class labels y, € {1,...,K} forn =1,..., N. We model
the latent score function for each class f; ~ GP (0, k) using
a GP prior with covariance function k(-, -, ). Given the set
of input vectors x,,, the joint prior distribution on the latent
variables is given as

prz f’ _

where f* = [fi(x1),. ..
We will use £, = [f1(Xn), ..., fK(Xn)] to denote the values
of the latent functions for the n’th data point x,,. We apply
a link function g : Z% ~ R that maps the probabilities of a
categorical distribution that live in a K dimensional simplex
Pn € I to the f,, € R, The generative process is then

Yn ~ Cat(pn)7 71(fn)-

N(£0,Kyy),

Prn=g

2.2. Inducing points and Stochastic Variational Inference

The coupled training points can be made conditionally inde-
pendent given a set of inducing points z living in the same
space as x [7, 14]. We augment the model with inducing out-
put variables for each class, u’ = [f*(z1),..., f'(zm)], i.e.
the latent functions evaluated at the inducing points z. The
joint model for (y, f,u) is then

u’ ~ N(0,Ky), )
f'lu’ ~ N(Kp K u' Kpr — Qyy), 3)
Yn ~ Cat(gil (fn))v (4)

CJixn)]and (K ¢lnm = k(Xpn, Xm, 0).

where Qr = K, K, K,y The matrices [K,.]; =
k(z;,z;;0) and [K .|, ; = k(x;,2;; 0) are the covariance ma-
trix between inducing points and the cross-covariance matrix
between the training points and inducing points, respectively.

Based on this generative model, [14] proposed to approxi-
mate the posterior distribution p(F, U|X, y) by [, ¢(f*, u’) =
[1, p(filu*)g(u’), where g(u’) is a variational multivariate
Gaussian distribution g(u’) = A/(u’|m’, S?). The variational
parameters A = {N}fil where \! = {mi, Si}, and the
kernel parameters 6 are estimated by maximizing the evidence
lower bound (ELBO)

ELBO(X, 0, 7) u’)|[p(u’))+

)
a(Ea|n) 102 P(Yn ).

K
}
Since the approximate posterior distribution [[; ¢(f/|X) =

[T, [ p(fi]u’)g(u’)du’ is a multivariate Gaussian, the marginals
q(frn|\) are analytically available

= [[NV(Filmi,, (01)%), (6)
m;, = kn, K ,m’, (7)
(09)2 = kpn + ko K1 (ST — Ky K kun. (8)

The key idea is that conditioned on the inducing points, the
training points become decoupled and the bound can be maxi-
mized using stochastic optimization. The ELBO contains two
terms: the first is the sum of KL divergences between the prior
distribution and ¢(u’) for each class, which can be computed
analytically. The second term is the sum of expectations of log
likelihoods with respect to the vector of latent score function
values f,, = [f1,..., fX] at datapoint x,,.

3. APPROXIMATE OBSERVATION MODELS

The second term of Eq. (5) involves a set of intractable expecta-
tions. In the binary classification unidimensional expectations
can be approximated using quadrature methods [13]. In the
multiclass scenario the link function g(-) couples all the latent
variables f,,, and for large K the high-dimensional integrals
are not feasible with quadrature methods.

In this work, we consider two different approximations
of the likelihood, where the high-dimensional integrals are
replaced with a product of (K — 1) uni-dimensional integrals,
each constituting a function operating on the pairwise dif-
ferences f¢' = f¢ — f! between the latent function values
belonging to the target class ¢ and one of the remaining classes
1. As a result, we get approximations of Eq. (5) that also



decomposes as a sum over classes

ELBO(, 6, n) mZ[ uh)|[p(u’))
- o
+ ) By(pen log pynl £
n=1

Since q(f¢') are univariate Gaussians, the expectations in
Eq. (9) can be efficiently approximated by quadrature. In
addition, this decomposition is amenable to stochastic opti-
mization, making it possible to process only a random subset
of the negative classes S, C {1,..., K}\c, where c is the
target class as in Eq. (10). This enables sparse updates

N
ELBO(A,6,7) ~ > % 3 ( - %KL

n=1 | n| 1E€ES,

(a(w)[|p(a)) + Eq (g5 log plunl £5))

with constant computational complexity O(1) wrt. K. We
choose |S,,| < K, so that at each optimisation step, we make
fewer updates to parameters reducing number of operations
and memory footprint.

Next we describe the two different approximations for the
likelihood: the One-vs-Each (OVE) approximation, and the
Augment and Reduce (AR) approximation.

(10)

3.1. One-vs-Each (OVE)

The OVE approximation is done by replacing the exact prob-
ability by a lower bound based on pairwise probabilities cor-
responding to the event y,, = ¢ conditioned on the event that
yn, takes one of the two labels y,, € {c, k} [4]. The joint log-
likelihood function for the OVE approximation for the n’th
observation is given by (see [4] for more details)

1
log P(yn = c|fy) = log 14S elile
ic
(‘Z
>logH1+ef1 T Zlogaf

i#c
where the inequality follows from the fact that (1 4+ >", p;) <

[[,(14p;) for 0 < p; < 1. Combining this bound with simpE
random sampling of the negative classes and substituting it

into Eq. (10) yields the following approximate lower bound

N

K-1 1 . )
Eove—sgd = Zl W Z |:— NKL(Q(UZ)Hp(uZ))—‘r (11

1€Sn
Eq(f:ii) log U(le)} .

The stochastic OVE bound is an an unbiased estimate of the
full OVE bound, but it is biased with respect to the original
objective in Eq. (1) [3].

12)

3.2. Augment and Reduce (AR)

Ruiz et al. [5] introduced a family of variational bounds for
categorical likelihoods under the name of augment and reduce
(A&R). The likelihood p(y,, = clf,) is augmented with a set

of auxiliary variables €, = [e, ..., eX] such that

P(yn = c|fy) / o(es) [T @(fs — i + €)del,, (13)
i#cC
where ¢(-), ®(-) are the PDF and CDF of the auxiliary vari-

ables, respectively. The integral is intractable in general, but
can be approximated with the following variational bound with
respect to a variational distribution ¢(e;,)

E-1) Z log ®(e, + fS— f2)]. (14)

| n €S,

Thus, having a tractable CDF is a requirement for this approx-
imation. The choices of the distributions for ¢(e,,) and ¢(e,,)
determine the form of the likelihood. In this paper, we explore
the following two specific choices: the logit and the softmax
bounds [5].

3.2.1. AR Logit Bound

Choosing ¢(e,,) to be the standard logistic distribution leads
to the so called AR-logit bound on Eq. (13)

log p(yn|fn) >Eq(e) {log WJF
U Stosate fi- 1] a9
n i€S,

While the second term in the bound is intractable, we can use
the reparameterization trick to approximate the expectation.
Substituting this bound into Eq. (10) yields a lower bound
that decomposes over classes. We will refer to this lower
bound as Lariegit- The essence of the AR bound is that the
K GPs, which are independent a priori, become coupled by
the auxiliary variable for each data point. Assuming a Dirac
delta distribution for € centered at zero, the AR-logit bound
collapses to the OVE bound plus a constant in Eq. (11). This
generalises the OVE bound.

3.2.2. AR Softmax Bound

The equivalent AR bound for the softmax can be derived
by substituting a standard Gumbel distribution for ¢(e,,) in
Eq. (14). By also choosing a Gumbel for the variational distri-
bution ¢(e,, ), the general form of the bound given in Eq. (13)



simplifies to Eq. (16), since the expectation has an analytical
solution

1
logp(ynlfn) 21 - log(a) — a (1+

B S exp(r - 1)

(16)
[Sn] kES,

Optimizing the variational parameter @ € [1, 00) will provide
a tighter bound to the softmax likelihood Eq. (1) than the OVE
and OVE-SGD bounds. Unlike in the previous bounds, the
expectation of Eq. (16) with respect to the marginals g(f<?)
given in Eq. (6) can be computed in closed form

Eq( fn) [1ng(yn|f )] > 1 —log(an)
1
_OTn(

where ¢ = Eqpery [f5'] and 0 = Varsei) [f5]. Thus,
this method does not require one-dimensional quadratures
like in the ARlogit and OVE bound described above, hence
removing the bias introduced by them [15].

ct)2
Z eXp mcz + (02)

€S,

), amn

3.3. OPTIMIZATION AND AMORTIZED INFERENCE

We optimize all the bounds introduced in section 3 with respect
to both the variational parameters A and the kernel parameters
0 using the ADAM optimizer with mini-batching. The OVE
aproximation Eq. (11) is parameter free, but both AR approx-
imations (Eq. (15) and (16)) introduce additional parameters
in the ELBO due to the presence of the local variational distri-
butions. This increases the dimensionality of the optimization
problem, increasing the chance that the optimizer will get
trapped in a local minima or a saddle point. To solve this prob-
lem, [5] proposes a nested loop approach in which they update
the local variational parameters of a batch in a local/inner loop,
re-estimate the ELBO quantity for this batch and then update
the kernel parameters and ¢(U; \) parameters. The approach
still needs to store the O(N) variational parameters. We refer
to this scheme as the Inner-Loop-method (IL).

In contrast, we propose an amortized scheme (AMO) that
reduces the memory footprint by embedding the constraint
that similar data points which lie close to each other in the
input space are likely to have similar auxiliary variables, and
by extension similar variational parameters. We model ¢,, as

€n Q(€n|77n)7 M = ’U'(wn; X),

where 7 is the augmented variable parameterised by p, 8 in
the ARLOGIT bound and « in the ARSOFT bound. The map
u can be any non-linear map from the input space to the varia-
tional parameters. In this work, we use a neural network with
two hidden layers. The strength of the similarity constraint is
controlled by the complexity and size of the network. Since
the parameters are tied through by sharing of network weights,
the optimisation problem is simplified.

4. EXPERIMENTS AND RESULTS

We evaluate the different methods empirically based on sev-
eral benchmark datasets. For all datasets, we standardize by
subtracting mean and dividing by standard deviations. Bib-
TeX [1], Mediamill, Delicious [16] are all multilabel datasets
which means that each datapoint may have more than one label
assigned to it. We pick the first label for each datapoint as
done in [5, 4]. This lowers the final number of classes for the
last three datasets as given in Table 1. The mean values of
q(U) for each class are initialized randomly from N(0.1,0.5)
and the covariance matrix was initialised as an identity matrix.

4.1. Performance Metrics

We quantify the performance of the proposed methods with
the classification accuracy and the coverage, motivated by the
extreme learning community [17]. When the distribution of
class labels are severely imbalanced, the classification perfor-
mance for the infrequent classes will not be clearly reflected
in the accuracy metric. It is given as the percentage of classes
in test-set which have a non-zero number of true positives,
Coverage = K'P /K* (18)
where K* represents the number of classes in the test set and
K™ is the number of classes with at least one true positive.

4.2. Baselines methods

Since most extreme classification methods, such as DIS-
MEC [17] and PPD-Sparse [18], are based on linear models,
we include linear models for both the OVE and AR-soft likeli-
hood as baselines. We also compare our methods against two
multi-class GP methods from the literature: the Robust-Max
(GP-RM) likelihood [19], which was introduced for making
models more robust to outliers, and Villa/Hernandez-Lobato
likelihood (GP-HL), which can be derived in two ways by
either taking the limit of noise parameter to zero in GP-RM, or
by replacing the sigmoid function with a Gaussian CDF in the
Love approximation. The computations are carried out using
the GPFlow implementation [10].

4.3. Results

Table 1 compares the performance of the baseline methods
with the proposed methods. The proposed GP methods per-
form better than linear models for all datasets except for the
Delicious and Mediamill dataset, where the performance is
similar to linear model. The ARSOFT approximation performs
better than the rest on the first three datasets.

The experiments show that the AR methods generally per-
form better than both the non-stochastic and stochastic OVE
methods when the number of negative class samples is fixed.
The difference is more pronounced when K is large and |S]| is
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Fig. 1: The plot on the left shows the test set classification accuracy (higher is better) for the MNIST dataset as a function the
sample size for the negative classes. The optimisation scheme is mentioned in parantheses. The plot on the right is a ranking plot
from 1 to 5 (1 being best, 5 being lowest) for the different likelihood approximations and optimisation schemes for all datasets

considered.
Linear ARSOFT | ARLOGIT
Name N K OVE | ARSOFT GP-RM, GP-HL | OVE | |S| | OVE-SGD AMO AMO
MNIST 60000 | 10 | 91.9 92.4 95.4,95.8 96.8 | 1 95.9 96.9 96.1
Fashion 60000 | 10 | 84.0 84.2 84.8, 86.3 878 | 2 86.5 87.4 86.6
BibTeX 4880 | 147 | 35.2 36.1 23.3,34.2 359 | 30 36.4 39.4 36.8
Mediamill | 30993 | 50 | 31.5 31.3 37.8, 38.9 355120 35.9 36.0 35.3
Delicious | 12920 | 355 | 17.7 18.3 159,175 16.4 | 30 16.0 16.4 16.2

Table 1: The third column gives accuracies obtained by a linear model combined with OVE and the best AR likelihood Ruiz2018.
RM and HL refer to GP model with Robust max likelihood and Hernandez-Lobato likelihood, respectively. |S| is the subsample
size. The baseline for GP was obtained using GPFlow, while for the linear models we used code provided by [5].

Name | Lin€ar-OVE | Linear-ARSOFT | GP-RM | GP-HL | OVE-SGD | ARSOFT(AMO) | ARLOGIT(AMO)
Al Cc | A|] cC Al C C/|lA[Cc|A]| cC A | C

M 315) 7.0 [313] 72 [37.8[125[38.9[209(359(350360] 420 |[353] 220

M-10D |29.6| 4.1 297 41 |34.8|125(30.1| 50 |322|125(336| 162 [329| 165

M-1000N [29.7| 8.8 |29.5| 7.4  |32.3|83 (260|155(29.8|187|31.0| 240 [299| 110

M-WMF |20.1| 7.3 [20.7| 73 |260|16.7|23.2|14.0|235|17.0|264| 355 |249| 2L5

Table 2: Performance of models on Mediamill with different slices. M is the original Mediamill dataset, M-10D is reduced to
D = 10 dimensions, M-1000N only contains N = 1000 observations, and in M-WMF the most frequent classes have been

removed. A and C denote Accuracy and Coverage, respectively.

relatively small. This is consistent with the behavior observed
by Ruiz et al. [5].

The performance of the amortized AR methods is better
or similar to their non-amortized counterparts (see Figure 1),
while having the advantage of a lower memory footprint. The
Inner-Loop method (IL) does not perform as well for bigger
data sets like BibTex.

The left panel in Figure 1 shows the classification accuracy

for all methods on MNIST dataset when the percentage of neg-
ative class samples is varied from 10% to 90%. As expected,
the general tendency is that classification accuracy increases
when the percentage of negative samples is increased. The
right panel shows the average rank for each method across
all datasets. It is seen that the amortized AR method with
the softmax likelihood is uniformly superior for all sample
percentages. From here onwards, we only show results for



amortized inference since they were mostly superior or similar
to the inner loop inference, and more robust. An explanation
could be that the optimisation in the local step can be challeng-
ing, quite sensitive to variational parameter update schedule
and can get stuck in local minima, when the number of classes
is high.

Table 1 shows that for the full Mediamill dataset, the pro-
posed methods perform slightly worse than the baseline GP-
RM and GP-HL methods. To further analyze this, we tested
the methods on several different slices of the original Medi-
amill dataset. In particular, we manipulated the dimensionality
D, the number of observations /N, and the class imbalance
by removing the most frequent classes. This resulted in the
following three new datasets: M-10D, M-1000N, M-WMF,
respectively, shown in Table 2. Both the baseline and proposed
GP have better accuracy and coverage than the linear models
for all variations of Mediamill. The accuracy for all baseline
methods drop substantially when the most frequent classes are
removed from the training set. The proposed methods seem
to have disadvantage in case of high-class imbalance, but the
relative performance gets better when the class imbalance is
reduced. The two proposed methods have better coverage than
the baseline methods for all variations of the Mediamill dataset.
The ARSOFT method produced significantly better coverage
in three out four variations of the Mediamill dataset, while
producing comparable performance to the ARLOGIT method
for the M-10D variant.

For all the data sets used in the experiments, a sample size
of about 20-30% worked well and was sufficient for optimisa-
tion to be stable. The performance then saturated for higher
sample sizes.

5. CONCLUSION

We proposed a scalable framework for extreme classification
using Gaussian processes. The core idea is to combine the ap-
proximate likelihood method called Augment and Reduce with
an amortized variational inference scheme. We applied the
proposed methods to several benchmark datasets and demon-
strated that the proposed method is capable of performing on
par or even better compared to state-of-the-art methods for GP
multi-class classification.

6. REFERENCES

[1] Y Prabhu and M Verma, “FastXML:Fast, accuraste and
stable tree-classifier for extreme multi-label learning,” in
KDD, 2014.

[2] K Bhatia, H Jain, P Kar, M Varma, and P Jain, “Sparse
local embeddings for extreme multi-label classification,
in NIPS, 2015.

s

[3] F Fagan and G Iyengar, “Unbiased scalable softmax
optimization,” arXiv preprint arXiv:1803.08577, 2018.

[4] MK Titsias, “One-vs-each approximation to softmax for
scalable estimation of probabilities,” in NIPS, 2016.

[5] FIR Ruiz, MK Titsias, AB Dieng, and DM Blei, “Aug-
ment and reduce: Stochastic inference for large categori-
cal distributions,” in ICML 18, 2018.

[6] CE Rasmussen and CKI Williams, Gaussian Processes
for Machine Learning, MIT Press, 1 2006.

[71 MK Titsias, “Variational learning of inducing variables
in sparse Gaussian processes,” in AISTATS 12, 2009.

[8] K Krauth, E V Bonilla, K Cutajar, and M Filippone,
“AutoGP: Exploring the capabilities and limitations of
Gaussian process models,” in UAI’17, 2017.

[9

—

J Riithiméki, P Jyldnki, and A Vehtari, ‘“Nested expec-
tation propagation for Gaussian process classification,”
JMLR, vol. 14, pp. 75-109, 2013.

[10] C Villacampa-Calvo and D Hernidndez-Lobato, “Scal-
able multi-class Gaussian process classification using
expectation propagation,” in ICML’17, 2017.

[11] M Girolami and S Rogers, “Variational Bayesian multi-
nomial probit regression with Gaussian process priors,’
in Neural Computation 18, pp. 790-1817. 2006.

[12] JH Albert and S Chib, “Bayesian analysis of binary
and polychotomous response data,” JASA, vol. 88, pp.
669-679, 1993.

[13] J Hensman, A Matthews, and Z Ghahramani, “Scalable
Variational Gaussian Process Classification,” in AISTATS
15,2015, vol. 38 of PMLR, pp. 351-360.

[14] J Hensman, N Fusi, and N Lawrence, “Gaussian pro-
cesses for big data,” in UAI 2013.

[15] AD Saul, Gaussian Process Based Approaches for Sur-
vival Analysis, Ph.D. thesis, 2018.

[16] G.Tsoumakas, I. Katakis, and I. Vlahavas, “Effective and
efficient multilabel classification in domains with large
number of labels,,” in ECML/PKDD 2008 Workshop on
Mining Multidimensional Data, 2008.

[17] R Babbar and B Scholkopf, “Dismec: Distributed sparse
machines for extreme multi-label classification,” in
WSDM’17, 2017, pp. 721-729.

[18] IEH Yen, X Huang, W Dai, P Ravikumar, I Dhillon,
and E Xing, “Ppdsparse: A parallel primal-dual sparse
method for extreme classification,” in SIGKDD’17,2017.

[19] D Hernandez-Lobato, J Miguel Hernandez-Lobato, and
P Dupont, “Robust multi-class Gaussian process classifi-
cation,” in NeurIPS, 2011, pp. 280-288.



Publication |l

Eero Siivola, Akash Kumar Dhaka, Michael Riis Andersen, Pablo Garcia
Moreno, Javier Gonzalez, Aki Vehtari. Preferential Batch Bayesian Op-
timization. The International Workshop on Machine Learning for Signal

Processing MLSP , Gold Coast, Australia, November 2021.

© 2021 IEEE Xplore.

Reprinted with permission.

85







2021 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, OCT. 25-28, 2021, GOLD COAST, AUSTRALIA

PREFERENTIAL BATCH BAYESIAN OPTIMIZATION

Eero Siivola* Akash Kumar Dhaka*

Pablo Garcia Moreno®

Michael Riis Andersen’

Javier Gonzdlez*
Aki Vehtari*

* Aalto University " Technical University of Denmark  Microsoft Research ¢ Amazon.com

ABSTRACT

Most research in Bayesian optimization (BO) has focused on
direct feedback scenarios, where one has access to exact values
of some expensive-to-evaluate objective. This direction has
been mainly driven by the use of BO in machine learning hyper-
parameter configuration problems. However, in domains such
as modelling human preferences, A/B tests, or recommender
systems, there is a need for methods that can replace direct
feedback with preferential feedback, obtained via rankings or
pairwise comparisons. In this work, we present preferential
batch Bayesian optimization (PBBO), a new framework that
allows finding the optimum of a latent function of interest,
given any type of parallel preferential feedback for a group
of two or more points. We do so by using a Gaussian process
model with a likelihood specially designed to enable paral-
lel and efficient data collection mechanisms, which are key
in modern machine learning. We show how the acquisitions
developed under this framework generalize and augment pre-
vious approaches in Bayesian optimization, expanding the use
of these techniques to a wider range of domains. An extensive
simulation study shows the benefits of this approach, both with
simulated functions and four real data sets.

Index Terms— Gaussian processes, Bayesian optimiza-
tion

1. INTRODUCTION

Understanding and emulating the way intelligent agents make
decisions is at the core of what machine learning and artificial
intelligent aim to achieve. To fulfil this goal, behavioural
features can be learned from demonstrations like when a robot
arm is trained using human-generated examples [1]. In many
cases, however, the optimality of the instances is questionable.
Reinforcement learning, via the explicit definition of some
reward, is another approach [2]. That can be, however, subject
to biases. Imagine asking a user of a streaming service to
score a movie between zero and ten. Implicitly, this question
assumes that she/he has a sense of the scale in which the new
movie is evaluated, which implies that an exploration of the
movie space has been already carried out.

Work done prior to Javier Gonzilez joining Microsoft Research.
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An alternative way to understanding an agent’s decisions
is to do it via preferences. In the movie example, any two
movies can be compared without scale. Also, the best of ten
movies can be selected or a group of movies can be ranked
from the worst to the best. This feedback, which can be pro-
vided without a sense of scale, provides information about
the user preferences. Indeed, in prospect theory, studies have
demonstrated that humans are better at evaluating differences
rather than absolute magnitudes [3].

In the Bayesian optimization literature (BO), these ideas
have also been studied in cases where the goal is to learn
the optimum of some latent preference function defined in
some Euclidean space [4]. Available methods use pairwise
comparisons to recover a latent preference function, which in
turn is used to make decisions about new queries. Despite the
batch setting being a natural scenario here, where more than
two points in the space are compared simultaneously, it has
not yet been carefully studied in the literature. One relevant
example for batch feedback is product design, especially in
the food industry, where one can only produce a relatively
small batch of different products at a time. The quality of
products, especially for foods, is usually highly dependent on
the time since production. The whole batch is usually best to
be evaluated at once and the next batch of products should be
designed based on the feedback so far. In this work, we show
that mechanisms to propose preferential batches sequentially
are very useful in practice, but far from trivial to define.

1.1. Problem formulation

Let f : X — R be a well-behaved black-box function defined
on a bounded subset X C R%. We are interested in solving the
global optimization problem of finding

Xmin = arg minf(x>' (1)
xeX

We assume that f is not directly accessible and that (noisy)
queries to f can only be done in batches B = {x; € X}{_,.
Let f be evaluated at all the batch locations, y(x;) = f(x;)+e,
1 =1,...,q, where ¢ ~ N(O,a2) is a random noise with
variance o2. We assume that we can receive a set of pairwise
preferences of the noisy evaluations on the batch. Here a



pairwise preference is defined by x; < x; := y(x;) < y(x;).
The goal is to find X,,;,, by limiting the total number of batch
queries to f, which are assumed to be expensive. This setup
is different from the one typically used in BO where direct
feedback from (noisy) evaluations of f is available [5].

In particular, we are interested in cases in which the pref-
erential feedback is collected in a sequence of B batches
By, = {x; € X}, forb = 1,..., B. Within each batch,
at iteration b, the feedback is assumed to be collected as a
complete (or partial) ordering of the elements of the batch,
I e N9 st xl}i =< xl}j, Vi < 7 < q or by the selection of the
preferred element x? of batch x? < x? Vi # .

We concentrate mainly on the batch winner case in this
work. We argue that the batch winner feedback is the most
useful type of batch feedback. As the preferential feedback
is collected from humans, the full ranking of the batch is
laborious for large batches and it sometimes even is impossible
(e.g. in A/B testing). The full ranking can also be reduced to
the batch winner case. Besides, as we later demonstrate in the
experiments, the added benefit of full ranking instead of the
batch winner is smaller than the difference between different
acquisition functions.

1.2. Related work and contributions

Pairwise comparisons are usually called duels in the BO and
bandits literature. In the BO context, [6] introduced a likeli-
hood for including preferential feedback into Gaussian pro-
cesses (GPs). [7] recomputed the model for all possible duel
outputs of a discrete dataset and used the expected entropy
loss to select the next query. [8] used expected improvement
(EI) [9] sequentially to select the next duel. Most recently,
[4] introduced a new state of the art and non-heuristic method
inspired by Thompson sampling to select the next duel.

In this work, we introduce a method called preferential
batch Bayesian optimization (PBBO) that allows optimizing
black-box functions with BO when one can query preferences
in a batch of input locations. The main contributions are:

¢ We formulate the problem so that the model for latent
inputs in preference feedback scales beyond a batch size
of two.

* We present and compare two alternative inference meth-
ods for the intractable posterior that results from the
proposed batch setting.

* We adapt two well known acquisition functions to the
proposed setting.

* We compare all inference methods, acquisition func-
tions, and batch sizes jointly in extensive experiments
with simulated and real data.

The code for reproducing the results is available at https:
//github.com/EmuKit/emukit/tree/master/e

mukit/examples/preferential_batch_bayesi
an_optimization

The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce the theoretical background. In Section 3,
we introduce batch input preferential Bayesian optimization
and three acquisition functions. In Section 4 we show the
benefits of our approach with simulated and real data. We
conclude the paper in Section 5.

2. MODELING BATCH PREFERENTIAL FEEDBACK
WITH GAUSSIAN PROCESSES

We assume that the latent black-box function f is a realization
of a zero-mean Gaussian process (GP), p(f) = GP fully
specified by some covariance function K which specifies the
covariance of the latent function between any two points [10].

2.1. Likelihood for batches of preferences

We propose a new likelihood function to capture the com-
parisons that are collected in batches. Assuming the general
case of batch B of ¢ locations and m preferences in a list
C e N™*2 such that x¢,, < X¢,,Vi € [1,...,m], the
likelihood of the preferences is

p(C|f):/.../ (H ﬂyciylgy%> @)
=1
(HN(ykfk,02)> dy1 ... dyg,
k=1

where f, is latent function value at x;, and o is the noise of
the comparison. This likelihood takes jointly into account the
uncertainty of the preferences. As a special case, for batch
size of two, the likelihood reduces to the one introduced in
[6]. If the provided feedback is only the batch winner x;,
the likelihood can be further simplified to (see details on the
supplementary material)

g o — .
wein = [ Noslsot) T o (2 ), @)

i=1,i#j

where ®(z) = [°__ N(7|0,1)dy. As the likelihood is not
Gaussian, the posterior distribution is intractable and some
posterior approximation has to be used.

2.2. Posterior distributions

The posterior distribution and the posterior predictive distribu-
tions of the model outcome are needed for making reasoned de-
cisions based on the existing data. Let us assume B preference
outcome observations C® € N™*2 at batches X® € R7*4¢
(b=1,...,B). Let us assume that the unknown latent func-
tion values f* € R?*! (b = 1, ..., B) have a GP prior and



each batch of preferences is conditionally independent given
the latent values £ at X®. The joint posterior distribution of
all the latent function values {f7'}2 , and £* (at unseen X*) is

P {1 X {X YL, {CP L) o @

B
pUE (1 (X [ )

The posterior predictive distribution for £* is obtained by inte-
grating over {f*}2_,.

2.3. Model selection and inference

Since the likelihood of the preferential observations is not
Gaussian, the whole posterior distribution is intractable and
some approximation has to be used. Next, we present expecta-
tion propagation (EP) and variational inference (VI) approxi-
mations. EP can be used for general batch feedback in Eq. (2).
With VI we limit to the batch winner case in Eq. (3). See more
details on both these methods in the supplementary material.

2.3.1. Expectation propagation using multivariate normal as
an approximate distribution

EP [11] approximates some intractable likelihood by a distribu-
tion from the exponential family so that the Kullback—Leibler
(KL) divergence from the posterior marginals to the approx-
imative posterior marginals is minimized. In this paper, we
use multivariate normal distributions for each batch so that in
the posterior distribution in Eq. (4), Hle p(CP|f%) is approx-
imated by [T, N (f|u?, V). In practice, for approximative
distributions from the exponential family, this can be done
in an iterative manner where the approximation of batch b is
replaced by the original one and the approximation of batch
b is updated by matching the moments the full approxima-
tive distribution and the replaced one. Since the moments for
the distribution in Eq. (2) are not analytically available, we
approximate them by sampling.

2.3.2. Variational Inference using stochastic gradient descent

The batch winner likelihood (Eq. (3)) has the same structure as
the one-vs-each likelihood in the context of multiclass classifi-
cation with linear models [12]. In this formulation, the product
of pairwise comparisons is used as a lower bound for the log
of the batch winner likelihood,

) dy;

e (d) o

We want to highlight that this is not an exact likelihood, but
a lower bound since we do not integrate over the uncertainty

long(yj\ijaz) ngl,i;éj @ (%

of the batch winner and we thus ignore the dependency of the
observations within a batch.

Let K be the prior covariance matrix at X = [X!,... XB]T,
let ax be a vector, and let 3 be another vector. Following [13],
we posit a Gaussian approximation of the posterior,

q(f) = N(f|Ka, (K +18) ). (©)

The variational parameters are optimised in an inner loop with
stochastic gradient descent after collecting derivatives and
likelihood terms from the comparison. The benefit of this form
compared to EP is that it gives us a single bound making the
optimization easier.

3. SEQUENTIAL LEARNING FOR BATCH
SETTINGS

In this section, we present two strategies for selecting the
batch locations. Although this work mainly concentrates on
the batch winner case, the presented acquisition functions are
applicable for the general preferential feedback of Eq. (2).

3.1. Expected Improvement for preferential batches

Expected improvement is a well established exploitative acqui-
sition function that computes the expected improvement over
the minimum of the values observed so far, y,,,;,. It also has
an extension in the batch setting, batch EI (g-EI) [14]. In the
context of preferential feedback, we do not observe the exact
function values and do not know the minimum of the observed
values. This adds one more source of uncertainty to the g-EI
for batches of direct feedback (see details on the supplemen-
tary material). One way of avoiding the computational cost of
having to integrate over the uncertainty of the minimum and
not having to update the model posterior is to use the minimum
of the mean of the latent posterior (tt,;, = min; p(x;)) of the
training data as a proxy for ¥,,;,. In this case, the acquisition
function equals the relatively fast g-EI [14]

-EI=E max min— Yi
q y[<iew]<u y>)+]

q
i=1
P(Yi < fmin, Yi < y; Vi # 9). @)

3.2. Thompson sampling for batches

A purely exploratory approach does not exploit the informa-
tion about the known good solutions. EI approaches are known
to over-exploit and the proposed approach is very expensive
to compute. Although Thompson sampling is heuristic, it is
known to work well in practice and nicely balance between
exploration and exploitation. We use the scalable batch BO ap-
proach of [15] to select the batch locations in our experiments.



Algorithm 1 Pseudo-code of the proposed PBBO method.
The inputs are the batch size g, the stopping criterion, the
acquisition strategy and the GP model.

1: while stopping criterion is False do

2:  Fit a GP to the available preferential observations
{CTHE at X7},

3:  Find ¢ locations XV 1 = {x;}?_, using the acquisi-
tion strategy.

4:  Query the preference CN+! of XN+1,

5:  Augment {X“}Y, with XN+ and {C'}Y, with

CN+1

6: end while
09 Initialization 1st batch
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— GP + initialization 4 comparisons
Fig. 1. Different rows visualize the true objective and the GP
posterior for different inference methods (Markov chain Monte
Carlo (MCMCO), Expectation propagation (EP), and variational
inference (VI)). The first column shows the GP posterior after
observing preferential feedback for a batch of size three (x
locations at black *+’-signs). The second column shows the
first BO iteration (x locations at red *+’-signs) using g-EI and
a batch size of four. The GP uncertainty is visualized as +1
and +£2 standard deviations.

In practice, we sample ¢ continuous draws from the posterior
predictive distribution of the latent variable and select each
batch location as a minimum of the corresponding sample.

3.3. Preferential batch Bayesian optimization

The pseudo-code for a general acquisition strategy is pre-
sented in Algorithm 1. The different parts of the algorithm
scale as follows. Assuming N batches of size g, fitting the GP
has the time complexity of O((N¢q)?). The inference method
brings some overhead to this.

4. EXPERIMENTS

From hereafter, EP stands for the expectation propagation
model and VI is the variational inference model. Markov
chain Monte Carlo (MCMC) is used as a ground truth. As
a baseline method, we show results if all acquisitions were

batch Expected Improvement batch Thompson sampling
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Fig. 2. Ursem Waves-function from the Sigopt library. Each
line illustrates the smallest value of the objective function in
the input locations visited so far as a function of the num-
ber of observations. The function is scaled between 0 and 1.
Different colors in each plot are different batch sizes, rows
are different inference methods and columns are different ac-
quisition functions. Each line is a mean of 10 different runs.
The dashed black line shows the average performance of the
baseline, random search.

selected completely at random. The acquisition strategies are
abbreviated as follows. g-EI stands for the g-expected improve-
ment, and TS stands for Thompson sampling. The methods
are implemented using GPy [16] and the MCMC inference is
implemented using Stan 2.18.0 [17]. In all experiments, the
GP kernel is the squared exponential and the hyper-parameters
are fixed to point values by optimizing a regular GP with 2500
noise free observations. The used MCMC algorithm is Hamil-
tonian Monte Carlo (HMC) with 9000 samples in total from 6
chains. The exact details and more results for all experiments
are available in the supplementary material.

4.1. Effect of the inference method

The different inference methods approximate the uncertainty
differently and this affects how the BO selects the next batch.
Figure 1 visualizes the GP posterior for different inference
methods with the same training data and then the posterior
approximation after the first iteration of BO when using g-
EI as the acquisition function. The black-box function is
f(x) = 2® — x. The Figure shows that EP results in very
similar posteriors as the MCMC ground truth when observing
only one batch of preferences that are relatively far away from
each other (first column). When observing the second batch
through BO, EP produces a wider posterior than MCMC, and
VI produces a narrower posterior.

4.2. Synthetic functions from the Sigopt library

Sigopt library is a collection of benchmark functions developed
to evaluate BO algorithms [18]. Ursem Waves is a function
from the library with multiple local minima around the search



T e — e

5 6 eeommmmm o T T \
L 4] i
52 |
< 0 T T T T T T
0 10 2 ()N % i 40 50 60

%EI S um. observations o baseline

* MCMC + VIxEP

Fig. 3. All combinations of the inference methods and ac-
quisition functions are ranked based on their average perfor-
mance over 10 runs for the batch size of 4 as a function of
the number of evaluations so far. Each combination is given
arank between 1-10 (lower is better) for each iteration. The
figure shows the ranks averaged over 6 functions from the
Sigopt library (Ursem Waves, Adjiman, Deceptive, Mixture-
OfGaussians02 and 3 and 4 dimensional Hartmann-functions).
Performance of random search is shown as a baseline.

domain. Figure 2 shows the best absolute function value for
the locations the function has been evaluated so far as a func-
tion of the number of function evaluations. The results are
shown for batch sizes 26, three acquisition functions, and
3 inference methods. The shown lines are averaged over 10
random runs. The function evaluations are transformed to
batch feedback by evaluating the function for the whole batch
at once and returning the minimum as the batch winner. The
results show that the both introduced acquisition functions
perform better than the baseline. The results show no clear
difference between batch sizes for any inference method or
acquisition function. Figure 3 shows the average performance
of the inference methods and all acquisition functions for the
batch size of four. The results are averaged over six functions
from the Sigopt library. The results show no clear difference
in the performance between TS and g-EIL

4.3. Comparison of batch winner and full ranking

One argument against using the batch winner type feedback
in BO is that it is less informative than full ranking. Although
it is not always possible to get the full ranking and providing
the batch winner is less work, it is interesting to compare
these feedbacks. Figure 4 shows the average performance
of complete ordering and batch winner type feedbacks for
both acquisition functions with batch size four. The results are
averaged over six functions from the Sigopt library. The results
show that the variation between the acquisition functions is
larger than it is between the feedback types.

4.4. Real life data case studies

To get insight into how the presented BO approach performs
in real-life applications, we compare the methods also with
real data. As the emphasis of this paper is on the batch size,
we stick to low dimensional datasets (d < 4) and present re-
sults for batch sizes up to 6. We want to highlight that larger
batch sizes and dimensions would remain feasible for TS. The

Avg. rank

T T T T T
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SNum. observations

T
0 10

QE - - - baseline
* Full ranking + Batch winner

Fig. 4. Same as in Figure 3, but for comparing full ranking
and batch winner feedbacks.
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Fig. 5. Summary of the performance of the presented method
on the real datasets. Each plot illustrates the minimum value
seen so far as a function of the number of function evaluations.
All data sets are scaled between 0 and 1. Different colors in
plots are different batch sizes, rows are different data sets and
columns are different acquisition functions. Each line is a
mean of 10 different runs. The dashed black line shows the
average performance of the baseline, random search. All lines
use EP as an inference method.

presented datasets are as follows. Sushi dataset! has a com-
plete ranking of 100 sushi items by humans and 4 continuous
features describing each sushi item. In the Candy dataset,
an online survey was used to collect pairwise preferences to
86 different candies” with two continuous features. We first
recovered the full ranking (from best to worst) of the whole
dataset and used that to provide feedback to any batch. Since
real data is discrete, we use linear extrapolation to compute
ranking for points that are not in the dataset.

Figure 5 shows the minimum function value seen so far as
a function of the number of function evaluations. The results
show batch sizes 2—6 and three acquisition functions for all
4 datasets when EP is used for inference. Each line shows
the average over 10 random runs for each setting. The results
are consistent with the results of the synthetic functions from
the Sigopt library. One notable difference compared to the
simulated results is that all methods beat the baseline only
barely due to the low signal-to-noise ratio. When fitting a GP
to the data sets that are scaled between 0-1, the noise standard
deviation varies between 0.1-0.2. The continuous features
alone seem not to be enough for performing the optimization.

! Available at: http://kamishima.net/sushi/
2Available at: https://github.com/fivethirtyeight/dat
a/tree/master/candy-power—-ranking



5. CONCLUSION

The results suggest that batch winner feedback is sufficient
for optimization tasks as it is easier to collect than the full
ranking of the batch and it performs almost as well in BO. The
results suggest that if the dimensionality of the data is low
and the chosen batch size is small, practitioners should use EP
inference or MCMC sampling to approximate the posterior
distribution. As an acquisition function, we recommend g-EI
for low dimensions and small batch sizes and TS for high
dimensions or large batch sizes due to its scalability.

Noise poses a problem to the presented approaches. Prefer-
ential observations are inherently less informative than direct
observations. Noise reduces the information carried by prefer-
ential queries even more. Larger batch sizes do not reduce the
problem due to the need to jointly account for the uncertainty
of the whole batch. We see no apparent solution to this prob-
lem and it, unfortunately, reduces the usability of preferential
feedback in noisy problems. With highly noisy data, random
search with large batches might be a good option.
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SUPPLEMENTARY MATERIAL: PREFERENTIAL BATCH BAYESIAN OPTIMIZATION
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A. DERIVING THE LIKELIHOOD OF THE BATCH WINNER

If the provided batch type feedback is the batch winner x; ,

J 1

_ |7 g1

€= j J+1

g

the likelihood can be simplified as

p(CIf) = f : f (H;il,i;éj ]lngyi) (HZ:1 N (k! frs 02)> dyr ... dyqg ®)
= J Nl f5,0°) g:l,i;éj (fyojo N(yi‘fi702)dyz‘) dy; )
- SNl £5:0%) Tz ey @ (252) dys. (10)

B. DETAILS OF THE EXPECTATION PROPAGATION MODEL

In expectation propagation, the observation model is approximated by a product of distributions from the exponential family,

p({C 1Ly H{E4) = [T p(CP1£%) ~ [T ao(£*) = a({£7}i2s). (1)
b=1

b=1

The approximative distributions, g, (+), (parametrized by distributions from the exponential family) are called ’site approximations’.
The prior distribution and the product of the site approximations can be used to approximate the posterior of the latent function
values,

) N(£10, ko(X, X)) (TT1, as(£"))
[+ [N(£]0, ko(X, X)) (Hf;b qb(fb)) dft...dfB’

where kg (-, -) is the covariance function parametrized by hyper-parameters 6, and X = [X*, ... X5]T. Before going into how
to optimize the parameters of the site approximations, let us first define the ’cavity distribution’,

q(f) 12)

. B
q_j(fj)o</-~~/N(f\0,k9(X,X)) [ o) | df'---af7~ a7+t af P, (13)

b=1

b#j

Work done prior to Javier Gonzilez joining Microsoft Research.



Also, let us define the ’tilted distribution’, which is the cavity distribution multiplied with the exact likelihood of the missing
observation

o ({F}20) = p(C7 | £7)q-;(F). (14)
In expectation propagation, we iteratively try to optimize the site approximations as a part of the global approximation. This is
done by minimizing the following Kullback-Leibler (KL) -divergence

, , . , (£ ,
KL (0 () |05 Pa5 () = [ any )10 (22500 ) 15

with respect to the parameters of the j:th approximative distribution. The solution to this equals to matching the zeroth, first and

second moments of the global approximation and the tilted distribution'. Since in our case the moments of the tilted distribution
are not computable in closed form, we approximate them by sampling.

C. DETAILS OF THE VARIATIONAL INFERENCE MODEL

The idea in variational inference is to minimize the Kullbak-Leibler -divergence between the approximative distribution and the
intractable posterior,

KL (a({f"} ) [Ip({f" s X H,. {C L)) (16)
with respect to the parameters of the approximative distribution. In our case, the approximative distribution is defined either by

Equation (7) or (8). However, since the posterior is intractable, the above equation must be approximated my maximizing the
evidence lower bound,

Eqtroye ) log p({C° 1L, [{f 1] — KL (q({f*}20) 1 p({F P i {X HEL)) - (I7)

This requires some gradient based optimization scheme. The required derivatives can be found e.g. from Titsias (2016).

D. EXPLAINING THE HIGH COMPUTATIONAL COST OF PQ-EI

As we further open Equation (8), it becomes:

1€[1,...,q]

pg-EI=E, , . l( max  (Ymin — yz)) 1
+

0 q
:/ p(ymin) ZEY (ymin - yi|yi S Ymin, Yi S Yj Vj 7& Z'a ymin) X p(yi S Ymin, Yi S y]vj # { | ymin)dymina

-0 i=1

where p(ymin ) is the distribution of minimum of p x ¢ dimensional Normal distribution® (p is number of iterations before this
and q is the batch size). More explicitly

P(Ymin) = Z ZN(_ymin | = ij> Zij i) ®pg1 (—Yminl | — i Wmin)s E—ijijij) »
=1 j=1

where ;7 is the posterior mean of the latent function at 4:th batch and j:th batch location, ¥;; ;; is the posterior covariance of
predictive output at the same location and

i Ymin) = t_i; — Wmin — 1) 2 —ij 17/ Sij i and S i = S_ij —ij — Beij 5545 45/ Sij is-
Furthermore Ey (Ymin — ¥il¥i < Ymin, Yi < Y;j VJ # 1, Ymin) can be computed efficiently with Tallis formula for small batch
sizes. However, even thought we need to only perform numerical integration over one dimension (as multidimensional cumulative
normal distributions can efficiently be approximated), the computation of p(y,,:,) becomes computationally very demanding

because of the need for computation of very high dimensional cumulative normal distribution functions (pg — 1 becomes very
large after few iterations).
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Fig. 6. Same as in Figure 1, but for batch size 3.
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Fig. 7. Same as in Figure 1, but for different function.
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Fig. 8. Same as in Figure 1, but for batch size 3 and for different function.

E. DETAILS AND ADDITIONAL RESULTS FOR SECTION 4.1

Figure 6 presents same experiment as in Section 4.1, but for batch size of 6. Figures 7 and 8 have results for function
1 3 1 z 1
7 8in(5z) + 5€* — 3.
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Fig. 9. Same as in Figure 2, but for Adjiman, Deceptive, MixtureOfGaussians02 and 3 and 4 dimensional Hartmann-functions

from the Sigopt function library.

F. DETAILS AND ADDITIONAL RESULTS FOR SECTION 4.2

For all simulation runs, the function bounds and output was scaled between 0 and 1, for all dimensions. The batch feedbacks
were computed from outputs which were corrupted with noise that has standard deviation of 0.05. g-EI was computed with 5000
posterior samples. All acquisition functions were optimized using limited memory Broyden—Fletcher—Goldfarb—Shanno (BFGS)
algorithm with box constraints. The optimization was restarted 30 times for g-EI. To increase the robustness of the EP, we do not
allow distances between points to be less than 0.05 within a single batch. The numerical gradients of TS were computed with
§ = 10~° and only 100 closest samples were taken into account when conditioning on the evaluated samples. Optimization of EP
was limited to at maximum 100 iterations. Optimization of VI was limited to 50 iterations and Adam was used for optimization.
Figure 9 presents similar results as in Section 4.2 for the 5 other functions from the Sigopt function library. All these functions
are well known global optimization bench mark functions.



G. ADDITIONAL RESULTS FOR SECTION 4.3

Additional results for the experiments in Section 4.3. Figure 10 compares full ranking and batch winner feedbacks for six
functions from the Sigopt library for q-EI and TS for batch sizes 3—6.
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Fig. 10. Comparison of full ranking and batch winner feedbacks for six functions from the Sigopt function for the tree acquisition

functions and batch sizes 3-6.
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Fig. 12. Same as in Figure 3, but for Sushi and Candy datasets.

H. ADDITIONAL RESULTS FOR SECTION 4.4

The details of the experiments are the same as for the experiments in Section 4.4 with few exceptions. Since the functions are
higher dimensional, acquisition optimization for g-EI was restarted 60 times. Also, no noise was added to real data.

Figure 11 presents similar results as in Section 4.4 for VI and MCMC. Figure 12 illustrates the ranks of different inference
methods similarly as in Figure 3, but for Sushi and Candy datasets.
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Abstract

We consider the problem of fitting variational posterior approximations using
stochastic optimization methods. The performance of these approximations de-
pends on (1) how well the variational family matches the true posterior distribution,
(2) the choice of divergence, and (3) the optimization of the variational objective.
We show that even in the best-case scenario when the exact posterior belongs to
the assumed variational family, common stochastic optimization methods lead to
poor variational approximations if the problem dimension is moderately large. We
also demonstrate that these methods are not robust across diverse model types.
Motivated by these findings, we develop a more robust and accurate stochastic
optimization framework by viewing the underlying optimization algorithm as pro-
ducing a Markov chain. Our approach is theoretically motivated and includes a
diagnostic for convergence and a novel stopping rule, both of which are robust to
noisy evaluations of the objective function. We show empirically that the proposed
framework works well on a diverse set of models: it can automatically detect
stochastic optimization failure or inaccurate variational approximation.

1 Introduction

Bayesian inference is a popular approach due to its flexibility and theoretical foundation in proba-
bilistic reasoning [2, 46]. The central object in Bayesian inference is the posterior distribution of the
parameter of interest given the data. However, using Bayesian methods in practice usually requires
approximating the posterior distribution. Due to its computational efficiency, variational inference
(VD) has become a commonly used approach for large-scale approximate inference in machine
learning [26, 56]. Informally, VI methods find a simpler approximate posterior that minimizes a
divergence measure D [¢||p] from the approximate posterior ¢ to the exact posterior distribution p —
that is, they compute a optimal variational approximation ¢* = argminge o D [¢||p]. The variational
family is often parametrized by a vector A € R¥ so the parameter of ¢* is given by

A" = argmin D [ga]|p] - (1)
AERE

Variational approximations in machine learning is typically used for prediction, but recent work
has shown that these approximations possess good statistical properties as point estimators and as
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Figure 1: (left) The distance between the variational and ground truth moments for a full rank VI
approximation on linear regression models of varying dimensions of posterior (see Section 4 for a
precise definition of the distance). AELBO denotes the standard stopping rule, MCSE denotes our
proposed stopping rule, and IA indicates that our iterate averaging approach was used while LI means
the last iterate was used. IA and our proposed stopping rule both improve accuracy, particularly in
higher dimensions. (right) The negative evidence lower bound (-ELBO) and the distances between
the variational and ground truth moments based on the current iterate and using IA. The stopping
point based on AELBO is shown by the dotted red line and occurs prematurely. Using our proposed
algorithm, the starting and stopping points for IA are shown by the dotted orange and black lines,
respectively.

posterior approximations [7, 39, 57, 58]. Variational inference is therefore becoming an attractive
statistical method since variational approximations can often be computed more efficiently than either
the maximum likelihood estimate or more precise posterior estimates — particularly when there are
local latent variables that need to be integrated out. Therefore, there is a need to develop variational
methods that are appropriate for statistical inference: where the model parameters are themselves the
object of interest, and thus the accuracy of the approximate posterior compared to the true posterior
is important. In addition, we would ideally like to refine a variational approximation further using
importance sampling [23, 60] — as in the adaptive importance sampling literature [38].

Meanwhile, two developments have greatly increased the scope of the applicability of VI methods.
The first is stochastic variational inference (SVI), where Eq. (1) is solved using stochastic optimization
with mini-batching [21]. The increased computational efficiency of mini-batching allows SVI to
scale to datasets with tens of millions of observations. The second is black box variational inference
methods, which have extended variational inference to a wide range of models in probabilistic
programming context by removing the need for model-specific derivations [28, 44, 51]. This flexibility
is obtained by approximating local expectations and their auto-differentiated gradients using Monte
Carlo approximations. While using stochastic optimization to solve Eq. (1) makes variational
inference scalable as well as flexible, there is a drawback: it becomes increasingly difficult to solve
the optimization problem with sufficiently high accuracy, particularly as the dimensionality of the
variational parameter X increases. Figure 1(left, solid lines) demonstrates this phenomenon on a
simple linear regression problem where the exact posterior belongs to the variational family. Since
q* = p, all of the error is due to the stochastic optimization.

Because in machine learning the quality of a posterior approximation is usually evaluated by out-of-
sample predictive performance, the additional error from the stochastic optimization is not necessarily
problematic. Therefore, there has been less attention paid to developing stochastic optimization
schemes that provide very accurate variational parameter estimates and, ideally, have good importance
sampling properties too. And, as seen in Fig. 1(left, solid blue line), standard VI optimization schemes
remain insufficient for statistical inference because they do not provide accurate variational parameter
estimates — particularly in higher dimensions.

Moreover, existing optimizers are fragile, in that they require the choice of many hyperparameters
and can fail badly. For example, the common stopping rule AELBO [28] is based on the change in
the variational objective function value (the negative ELBO). But, as illustrated in Fig. 1(right), using
AELBO results in termination before the optimizer converges, resulting in an inaccurate variational



approximation (intersection of blue line and purple vertical line). Using a smaller cutoff for AELBO
to ensure convergence resulted in the criterion never being met because the stochastic estimates of
the negative ELBO were too noisy. To remedy this problem a combination of a smaller step size
(resulting in slower convergence) and a more accurate Monte Carlo gradient estimates (resulting is
greater per-iteration computation) must be used. Thus, the standard optimization algorithm is fragile
due to a non-trivial interplay between its many hyperparameters, which requires the user to carefully
tune all of them jointly.

In this paper, we address the shortcomings of current stochastic optimizers for VI by viewing the
underlying optimization algorithm as producing a Markov chain. While such a perspective has been
pursued in theoretical contexts [12, 43] and in the deep neural network literature [15, 22, 24, 35], the
potential innovative algorithmic consequences of such a perspective, particularly in the VI context,
have not been explored. Our Markov chain perspective allows us create more accurate variational
parameter estimates by using iterate averaging, which is particularly effective in high dimensions (see
red dotted lines in Fig. 1). But, even when using iterate averaging, the problems of fragility remain.
In particular, we need to decide (A) when to start averaging (or when the optimizer has failed) and
(B) when to terminate the optimization. For (A), we use the R diagnostic [16, 54], a well-established
method from the MCMC literature. For (B), we use Monte Carlo standard error estimates based on
the chain’s effective sample size (ESS) and the ESS itself [54] to ensure convergence of the parameter
estimate (again drawing on a rich MCMC literature [13, 14]). We also use the k diagnostic from the
importance sampling literature to check on the quality of the variational approximation and determine
whether it can be used as an importance distribution [55, 60]. By combining all of these ideas, we
develop an optimization framework that is robust to the selection of optimization hyperparameters
such as step size and mini-batch size while also producing substantially more accurate posterior
approximations. We empirically validate our proposed framework on a wide variety of models and
datasets.

2 Background: Variational Inference

Let p(y,8) denote the joint density for a model of interest, where y € YV is a vector of N
observations and 8 € RY is a vector of model parameters. In this work, we assume that the
observations are conditionally independent given 6; that is, the joint density factorizes as' p(y, 8) =
Hil p(yi|0)po(0). The goal is to approximate the resulting posterior distribution, p(6) = p(0|y),
by finding the best approximating distribution ¢ € Q in the variational family Q as measured by
a divergence measure. We focus on two commonly used variational families — the mean-field and
the full-rank Gaussian families — and the standard Kullback-Leibler (KL) divergence objective, but
our approach generalizes to other variational families and divergences as well. It can be shown that
minimizing the KL divergence is equivalent to maximizing the functional known as the evidence
lower bound (ELBO) £ : RX — R given by [3]

N 1 N
£ =B, [p(y.0)] - £, Ina(6)] = Y- (E, Inp(sl6)] - KL oIl ) =3 ).

i=1
where ¢ is parametrized by A € R¥ and £;(X) = E, [Inp(y;|6)] — KL [q||po]. The optimal
approximation is gy~ for A* = argmaxy £ ().

2.1 Stochastic Optimization for VI

We will consider approximately finding A* using the stochastic optimization scheme

Aty = XN +177eG¢ )

where g; is an unbiased, stochastic estimator of the gradient £ at A; (i.e., E [g:] = VL (A¢)), 1 is
a base step size, and v; > 0 is the learning rate at iteration ¢, which may depend on current and
past iterates and gradients. The noise in the gradients is a consequence of using mini-batching, or
approximating the local expectations £;(\) using Monte Carlo estimators, or both [21, 37, 44]. For

'In addition, we may have that p(y:|0) = [ p(v:|0, 2i)p(z:|0)dz;. But, for simplicity, we do not write the
explicit dependence on the local latent variable z;.



standard stochastic gradient descent (SGD), v, is a deterministic function of ¢ only and converges
asymptotically if ~; satisfies the Robbins—Monro conditions Ztil v = oo and Zfi 1 7F < oo [45].
SGD is very sensitive to the choice of step size since too large of a step size will result in the algorithm
diverging while too small of a step size will lead to very slow convergence. The shortcomings of
SGD have led to the development of more robust, adaptive stochastic optimization schemes such as
Adagrad [11], Adam [27, 52], and RMSProp [20], which modify the step size schedule according to
the norm of current and past gradient estimates.

Even when using adaptive stochastic optimization schemes, however, it remains non-trivial to check
for convergence because we only have access to unbiased estimates of the value and gradient of
the optimization objective L. Practitioners often run the optimization for a pre-defined number of
iterations or use simple moving window statistics of £ such as the running median or the running
mean to test for convergence. We refer to the approach based on looking at the change in £ as the
AELBO stopping rule. This stopping rule can be problematic as the scale of the ELBO makes it
non-trivial to specify a universal convergence tolerance €. For example, Kucukelbir et al. [28] used
€ = 1072, but Yao et al. [60] demonstrate that ¢ < 10~* might be needed for good accuracy. More
generally, sometimes the objective estimates are too noisy relative to the chosen step size 7, learning
rate -y, threshold €, and the scale of £, which results in the stopping rule never triggering because the
step size is too large relative to the threshold. The stopping rule can also trigger too early if € is too
large relative to 7 and the scale of L. In either case, the user might have to adjust any or all of 7, 7,
and ¢; run the optimiser again; and then hope for the best.

2.2 Refining a Variational Approximation

Another challenge with variational inference is assessing how close the variational approximation
gx(8) is to the true posterior distribution p. Recently, the k diagnostic has been suggested as a
diagnostic for variational approximations [60]. Let 81, ..., 05 ~ gx denote draws from the variational
posterior. Using (self-normalized) importance sampling we can then estimate an expectation under
the true posterior as E [£(8))] = °5_, f(85)w(0,)/35_, w(8,), where w(8y) = p(6]y)/q(8s).
If the proposal distribution is far from the true posterior, the weights w(8) will have high or infinite
variance. The number of finite moments of a distribution can be estimated using the shape parameter
k in the generalized Pareto distribution (GPD) [55]. If & > 0.5, then variance of the importance
sampling estimate of IE [f(@)] is infinite. Theoretical and empirical results show that values below
0.7 indicate that the approximation is close enough to be used for importance sampling, while values
above 1 indicate that the approximation is very poor [55].

Recent work [18] suggests that SGD iterates can converge towards a heavy tailed stationary distribu-
tion with infinite variance for even simple models (i.e. linear regression). Furthermore, even in cases
that don’t show infinite variance, the heavy tailed distribution may not be consistent for the mean,
i.e. the mean of the stationary distribution might not coincide with the mode of the objective. In this

work we again rely on k to provide an estimate of the tail index of the iterates (at convergence) and
warn the user when the empirical tail index indicates a very poor approximation. We leave a more
thorough study of this phenomenon for future work.

3 Stochastic Optimization as a Markov Chain

Figure 1 (left) shows that as the dimensionality of the variational parameter increases, the quality
of the variational approximation degrades. To understand the source of the problem, we can view a
stochastic optimization procedure as producing a discrete-time stochastic process (A;);>1 [5, 8, 32,
36, 59]. Under Robbins—Monro-type conditions, many stochastic optimization procedures converge
asymptotically to the exact solution A* [33, 45], but any iterate A, obtained after a finite number of
iterations will be a realization of a diffuse probability distribution 7; (i.e., Ay ~ 7:(\¢)) that depends
on the objective function, the optimization scheme, and the number of iterations .

We can gain further insight into the behavior of (A;);>1 by considering SGD with constant learning
rate (that is, with 7, = 1). Under regularity assumptions, SGD admits a stationary distribution
Teo (that is, lim7m; = 7). Moreover, m,, will have covariance ¥, and mean A, such that
Aoo — A*|| = O(n) [8]. Thus, for some sufficiently large ¢y, once ¢t > to the SGD will reach
approximate stationarity: m; & .. This implies that E[A;] is within O(n) of A*. However, the



variance V[A;] &~ X could be large. Indeed, we expect that as the number of model parameters
increase — and hence the number of variational parameters K increases — the expected squared
distance from A to the optimal parameter A* will increase. For example, assuming for simplicity that
the stationary distribution is isotropic with ¥ = o?I'x (where I denotes the K x K identity matrix),
the expected squared distance from X to the optimal value is given by E[| A — A*||?] = o> K + O(n?).
Therefore, we should expect distance between A; and A* to be O(VK ), which implies that the
variational parameter estimates output by SGD become increasingly inaccurate as the dimensionality
of the variational parameter increases. As demonstrated in Fig. 1(left), one should be particularly
careful when fitting a full-rank variational family since the number of parameters is K = P(P+1)/2.

Although the preceding discussion only applies directly to SGD, it is reasonable to expect that robust
stochastic optimization schemes such as Adagrad, Adam, and RMSprop will have similar behavior as
long as v, and g; depend at most very weakly on iterates far in the past.

3.1 Improving Optimization Accuracy with Iterate Averaging

While we have shown that we should not expect a single iteration A; to be close to A* in high-
dimensional settings, the expected value of A; is equal to (or, more realistically, close to) A*.
Therefore, we can use iterate averaging (IA) to construct a more accurate estimate of A* given by

3 T
A= 5 3 Aeris 3)
where we should aim to choose ¢ > ty. In the fixed step-size setting described above, the estimator

X has bias of order 7 and covariance V[A] ~ 3 /T + 2 do1<icj<t COV[Atti, At+;]/T?. Hence, as
long as the iterates A, are not too strongly correlated, we can reduce the variance and alleviate the

effect of dimensionality by using iterative averaging.

Iterate averaging has been previously considered in a number of scenarios. Ruppert [50] proposes
to use a moving average of SGD iterates to improve SGD algorithms in the context of linear
one-dimensional models. Polyak and Juditsky [42] extend the moving average approach to multi-
dimensional and nonlinear models, and showed that it improved the rate of convergence in several
important scenarios; thus, it is often referred to as Polyak—Ruppert averaging. In related work,
Bach and Moulines [1] show that an averaged stochastic gradient scheme with constant step size
can achieve optimal convergence for linear models even for (non-strongly) convex optimization
objectives. Recent work demonstrates that averaging iterates can help improve generalization in deep
neural networks [15, 22, 24, 35]; note, however, that our application of IA aims not just to improve
predictive accuracy but also the accuracy of the posterior approximation.

3.2 Making Iterate Averaging Robust

In order to make iterate averaging robust in practice, we must (1) ensure that the distributions of the
iterates have finite variance, and (2) determine effective, automatic ways to set the two (implicit) free
parameters of A: ¢ (when to start averaging) and 7" (how many iterates to average). #1 is crucial since
otherwise even computing a Monte Carlo estimate A is questionable. We use an approach based on
the k statistic (see Line 9 of Algorithm 1); since in our experiments we did not find any cases of
infinite-variance iterates, we defer further discussion of our approach to the Supplementary Material.
This use of k over the process’ iterates is not to be confused with our application of k to determine
the quality of the variational approximation that we compute after the optimization. For #2, recall
that our Markov chain perspective suggests that we should start averaging at ¢ > ¢y, where ¢y denotes
the iteration after which the distribution of A; has approximately reached stationarity and therefore is
near the optimum [25, 47]. We must then select 7" large enough that X is sufficiently close to A*. We
address how to robustly choose ¢ and T in turn.

Determining when to start averaging Previous approaches to selecting ¢ rely on the so-called
Pflug criterion [6, 41, 48], which is based on evaluating the sum of the inner product of successive
gradients. Unfortunately this approach is not robust and can be slow to detect convergence [40]. To
develop an alternative, robust approach to selecting ¢ we turned to the Markov chain Monte Carlo

literature. In MCMC, the R statistic is a canonical way to determine if a Markov chain have reached
stationarity [16, 17, 54]. The standard approaches to computing R is to use multiple Markov chains.
If we have J chains and N iterates in each chain, )\53), suchthati =1,...,N;j=1,...,J, then



R= (V / W)l/ 2 where V and W are estimates of, respectively, the between-chain and within-chain

variances. We use the split—}A% version, where all chains are split into two before carrying out the
computation above, which helps with detecting non-stationarity [17, 54] and allows us to use it even
when J = 1.

In order to utilize R, we run .J optimization runs (“‘chains”) in parallel and consider the iterates at
stationarity when R < 7, where 7 > 1 is a user-chosen cutoff. We select a moving window and
only use the most recent a X t samples for computing R (where 0 < a < 1 and ¢ is the current
iterations counter), since we do not expect iterates before the (unknown) £ to be close to the stationary
distribution. There is a trade-off between making a large, which leads to more accurate and potentially
smaller estimates for R, and making a small, which leads to more quickly determining when the
iterates are near stationarity, but more noisy estimate. In practice we found ¢ = 0.5 to be a good
choice, although somewhat larger or smaller values would work as well. a = 0.5 is also the most
commonly used window size in MCMC literature. Concerning the choice of the cutoff 7, in the
MCMC literature R is required to be very precise since the stationary distribution is the true posterior,
so 7 = 1.01 or even smaller is recommended [53, 54]. In our case, since we are less concerned about
the quality of the stationary distribution, we use 7 = 1.2. The algorithm is robust for values even

upto 1.4. R is computed after every W iteration.

Determining when to stop averaging Once t > t; is found using R, we must determine how
many iterates to average. Since all J optimizations are guaranteed to reach the same optimum (if

there are no local optima) due to our use of R, we can combine the iterates into a single variational
parameter estimate A = Zj:l et Agi)z/ (JT), where A the sth iterate of the jth chain.

Due to the non-robustness of the AELBO stopping rule, we propose an alternative stopping criterion
that is robust to the (unknown) scale of the objective and which accounts for the fact that the
variational parameter is the quantity of interest, not the value of the objective function. Again
turning to the MCMC literature and taking advantage of our iterative averaging approach, we
propose to use the Monte Carlo standard error (MCSE) [14, 19, 54], which is given as MCSE()\;) =
{V(X\i)/ESS(A\;)}*/2, where V();) is the variance of the ith component of the iterates, ESS =

JN/(1+ Y72, 2p,) is the effective sample size (ESS), N is the number of iterations after R
convergence (used to compute the variance), and p; is the autocorrelation at lag ¢. The ESS accounts
for the dependency between iterates and in general we expect it to be smaller than the total number of
iterates JN. We compute the ESS using the method described in Vehtari et al. [54]. In addition to
checking that the median value of the MCSE();) is below some tolerance ¢, to ensure the MCSE
estimates are actually reliable, we also require that all of the effective sample sizes are above a
threshold e.

We note that a benefit of our approach is that the MCSE also provides an estimate of how many
significant figures in the parameter estimate A are reliable. Such reliability estimates are particularly
important in high dimensions since, as we will see (Section 4 and Table 1), even small perturbations
to the location or scale parameters can result in a very bad approximation to the posterior distribution.

Diagnosing convergence problems with autocorrelation values The autocorrelation values p;
that are computed when estimating ESS can also used as a diagnostic if R is not falling below 7
or the MCSE is not decreasing when more iterations are averaged. Large autocorrelations before
R<r may indicate that the window a needs to be increased in order to estimate R effectively. Large
autocorrelations after averaging has started suggests iterate averaging may not be reliable.

4 Experiments

We now turn to validating our robust stochastic optimization algorithm for variational inference
(summarized in Algorithm 1) through experiments on both simulated and real-world data. In our
experiments we used n = 0.01,W = 100,a = 0.5,7 = 1.2, and e = 20. To ensure a fair
comparison to the AELBO stopping rule, we used J = 1 in all of our experiments; the exception
is that Fig. 2 used .J = 4 since it does not involve a comparison to AELBO. We also put AELBO
at an advantage by doing some tuning of the threshold €, while keeping ¢ = 0.02 when using



Algorithm 1 Robust Stochastic Optimization for Variational Inference

1: Input: learning rate 7, # of optimization runs J, window size a, evaluation window W, R cutoff
7, MCSE cutoff ¢, ESS cutoff e, iterate initalizations )\(()J ) fory=1,...,J

2: for ¢t < 1to Typax do

3 Compute A viaEq. (2),j =1,...,J

4: if £t mod W = 0 then__

5: Compute R;, the R value for the ith component of A > using last at iterates
6 if max; R; < 7 then

7 Tyt

8: __break

9: if max; R; < 7 or k of iterates > 1.0 then
10: Warn user that optimization may not have converged
11: return A computed from the last W iterates
12: else
13: for t <+ T to Thax do
14: Compute )\,(ﬂ) viaEq.(2),j=1,...,J
15: if t — Tp mod W = 0 and MCSE < € and ESS > e then > using last t — Tj iterates
16: break
17: return A computed from the last t — T, iterates
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Figure 2: For the linear regression model with posterior correlation 0.9, the evolution of (a) moment

distance D, (b) k statistic, and (c¢) R statistic during optimization. For D and k (of the variational
approximation) we show the values for the last iterate (solid lines) and averaged iterates (dashed
lines).

our MCSE criterion. We show the results based on using RMSprop, but we found that AdaGrad
performed similarly (see Supplementary Material). For the variational approximation family we used
multivariate Gaussians ¢(6) = N'(0;m, = u, X, = LLT) where L is the Cholesky decomposition
of the covariance matrix. We used viabel [23] for inference, TensorFlow Probability [9] and Stan [4]
for model-construction, and arviz [29] for tail-index estimation.

The linear regression experiments with synthetic data mentioned in Section 1 (and described in detail
in the Supplementary Material) provide a useful case study of stochastic variational inference where
the true posterior distribution belongs to the variational family, meaning that any inaccuracy in the
variational approximation was due to the stochastic optimization procedure. We also investigated
a variety of models and datasets using black box variational inference: logistic regression [61] on
three UCI datasets (Boston, Wine, and Concrete [10]); a high-dimensional hierarchical Gaussian
model (Radon [34]), the 8-school hierarchical model [49], and a Bayesian neural network model with
10 hidden units and 2 layers [30] to classify 100 handwritten digits from the MNIST dataset [31]
(MNIST100). The 8-school model has a significantly non-Gaussian posterior and has served as a test
case in a number of recent variational inference papers [23, 60]. We considered both the centered
parameterization (CP) and non-centered one (NCP) because the NCP version of 8-school is easier to
approximate with variational methods [23, 60], and therefore experiments on both provide insight



into the robustness of a variational algorithm. We also experiment with a four layer normalising
flow (NF) model to fit the 8-school posterior, which gave the best estimate for posterior mean in
all experiments with 8-school, with iterate averaging. For all real-data experiments we estimated
the ground-truth posterior moments (i.e., the mean p and covariance matrix ¥) using the dynamic
Hamiltonian Monte Carlo algorithm in Stan [4]. We used these to compute the normalized moment
distance D = (D2 + D%)'/2, where Dy, = || — fal|2, Ds = || — 3[|'/2 and /2 and 3 denote,
respectively, the variational estimates of the posterior mean and covariance.

Iterate averaging improves variational parameter estimates First we investigated the benefits
of using iterate averaging rather than the final iterate. For the linear regression model, Fig. 1 shows
the benefits of TA when using either AELBO or MCSE as a stopping criteria, with a larger gain
coming from its use with MCSE (and R) since in that case the iterates were closer to the optimum.
Figure 1(right) shows the improved accuracy of iterate averaging compared to using the last iterate
in detail for the case when the dimension of the linear regression model was P = 70. Figures 2a
and 2b provides a further example of the benefits of iterate averaging for linear regression in the
more challenging case of strong posterior correlation. IA provides an approximately two orders of
magnitude improvement in accuracy. The improvement in importance sampling performance is also
dramatic: while the % statistic for the variational approximation after the last iterate is above the 0.7

reliability threshold even when with data of dimension P = 10, the k statistic of A remains below or
near the 0.7 when P = 60.

Table 1 shows that in our real-data experiments, IA almost universally outperforms the last iterate
when using Algorithm 1, both in terms of moment estimates and approximation’s I%; however, because
the AELBO stopping rule sometimes resulted in premature termination of the optimizer, IA did not
always provide a benefit with AELBO, which lends further support for using our more comprehensive
robust optimization framework. The only exception was the (multimodal) MNIST100 posterior,
where for MCSE the k statistic for the last iterate was superior to that for IA — although both were
very large.

MCSE stopping criteria improves robustness and accuracy Recall that Fig. 1 (left) provides
an case where the AELBO stopping rule results in premature termination of the optimizer. For the
real-data examples, in Table 1 we see that due to substantially earlier termination (small 7"), using
AELBO consistently results is less accurate posterior approximations in terms of moment estimates
and k. The only exception is the Radon model, which never reaches convergence according to the

AELBO criterion and, as a result, produces better posterior mean accuracy and a smaller k statistic

Table 1: Real-data results comparing the AELBO stopping rule to our proposed MCSE stopping rule
(which implements all of Algorithm 1). ' = number of variational parameters,and 7' = total number
of iterations before termination. x denotes that convergence was not reached after 75, iterations.
Rule=Stopping Rule, 8-s.=eight school, E=ELPD

Model K Rule T D, D,0A) Ds Ds(dA) k k(dA) E E(IA)

Boston 104 AELBO 2100 0.02 0.008  0.06 0.38 090 11  —95 —120
MCSE 5900 0.003  0.001  0.008 0.004 055 0.06 —79 -78

Wine 77 AELBO 2400 0.005 0.004 0.017 0.1 0.78 15 —435 -410

MCSE 5300 0.002 0.001 0.0006  0.00003 0.70 0.07 —424 —425
Concrete 44 AELBO 1800 0.02 0.04 0.018 0.51 2.7 15 —158 —170
MCSE 3900 0.015 0.001 0.02 0.004 0.74 0.09-152 -151
8-s. (CP) 65 AELBO 1100 1.9 4.5 3.5 5.8 0.98 0.85
MCSE 6200 2.1 1.8 3.5 3.7 0.88 0.78
8-s. (NCP) 65 AELBO 1700 0.12 0.09 1.02 1.02 0.60 0.60
MCSE 2400 0.14 0.13 1.05 0.98 0.58 0.63
8-s. (NF) 84 AELBO 800 0.17 0.18 1.89 2.01 0.70 0.72
MCSE 7500 0.17 0.06 1.48 1.27 0.67 0.64

Radon 4094 AELBO *15000 5.8 5.7 0.80 0.40 1.2 034
MCSE 9500 6.0 5.9 1.2 1.1 1.3 0.40

MNIST100 7951 AELBO 120082.7 83.7 34.1 34.1 33 32
MCSE *10000 33.6 51.0 34 34 70 11
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Figure 3: Autocorrelation plots for (a) the location parameters for weights: 3, B2, and (33 for linear
regression using a mean-field variational family and (b,c) the location parameters of p, 7 and 6;
for 8-schools centered and non-centered parameterisations. The plots serve as a diagnostic tool for
assessing the efficiency of averaging.

than using MCSE. On the other hand, MCSE runs for approximately half as many iterations, still
has a k statistic less than 0.5, and produces a more accurate posterior mean estimate. The threshold
€ = 0.02 was kept the same for all the datasets in case of MCSE, roughly of the same order as the
step size, and we found it to be quite robust compared to AELBO. We also report Expected Log
Predictive Density for the UCI datasets, our algorithm obtains a better ELPD on two of the datasets.

Autocorrelation and . detect problematic variational approximations Figure 3 provides an
example where, for linear regression, the oscillation in the autocorrelation plot indicates super-
efficiency in the averaging due to negative correlation in odd lags [54]. Supplementary Figures 1b
and 1c provide examples where, for the 8-school models (both CP and NCP), the iterates are heavily
correlated and thus averaging is less efficient, which is reflected in the less dramatic benefits of using

IA (Table 1). The k statistics (Table 1) provide good guidance of approximation accuracy.

R detects optimization failure Figures 1 and 2c and Table 1 provide examples where R success-
fully detects convergence of the optimization. Just as importantly, R can also diagnose optimization
problems such as multi-modality. For example, if the variational objective has multiple (local)
optima, different optimizations can end up in different optima due to by random initialization; but
this would be indicated by a large R. For example, when we used Algorithm 1 with J = 4 for
the multimodal MNIST100 model, the maximum R was 4.8. This result also provides support for
using J > 1 parallel optimizations, since such multimodality cannot be detected when J = 1. A
direction for future work would be to approximate a multimodal posterior by extending our approach
to analyze the convergence in each mode and then combine results of different modes (e.g., by
stacking weights [60]).
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Broader impact

There are sometimes misconceptions about how fast or accurate variational inference can be for
Bayesian inference. In this paper, we show potential pitfalls of current practices that may lead to
incorrect conclusions, especially when the interest of the user is more focused on inference than
prediction. More robust and reliable inference makes data analysis for decision-making by scientists
and organizations (e.g., corporations, governments, and foundations) more reliable and reproducible.



Whether such improvements in decision-making quality lead to better outcomes for society will
depend upon the goals of the organization or person. On net, however, we expect more reliable data
analysis to be for the good.
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Abstract

Current black-box variational inference (BBVI) methods require the user to make
numerous design choices—such as the selection of variational objective and ap-
proximating family—yet there is little principled guidance on how to do so. We
develop a conceptual framework and set of experimental tools to understand the
effects of these choices, which we leverage to propose best practices for max-
imizing posterior approximation accuracy. Our approach is based on studying
the pre-asymptotic tail behavior of the density ratios between the joint distribu-
tion and the variational approximation, then exploiting insights and tools from
the importance sampling literature. Our framework and supporting experiments
help to distinguish between the behavior of BBVI methods for approximating
low-dimensional versus moderate-to-high-dimensional posteriors. In the latter case,
we show that mass-covering variational objectives are difficult to optimize and do
not improve accuracy, but flexible variational families can improve accuracy and
the effectiveness of importance sampling—at the cost of additional optimization
challenges. Therefore, for moderate-to-high-dimensional posteriors we recommend
using the (mode-seeking) exclusive KL divergence since it is the easiest to optimize,
and improving the variational family or using model parameter transformations
to make the posterior and optimal variational approximation more similar. On
the other hand, in low-dimensional settings, we show that heavy-tailed variational
families and mass-covering divergences are effective and can increase the chances
that the approximation can be improved by importance sampling.

1 Introduction

A great deal of progress has been made in black-box variational inference (BBVI) methods for
Bayesian posterior approximation, but the interplay between the approximating family, divergence
measure, gradient estimators and stochastic optimizer is non-trivial — and even more so for high-
dimensional posteriors [1, 10, 29, 31]. While the main focus in the machine learning literature has

: Equal contribution.
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Figure 1: Illustration of a mean-field approximation with exclusive (mode-seeking) and inclusive
(mass-covering) divergences. (a) The typical 2D illustration (correlation 0.9) gives the impression that
the inclusive divergence would provide a better approximation. (b) For correlated Gaussian targets in
dimensions D = 2,5, 10, 50, the marginal distributions of the distance from the mode for samples
drawn from the approximation (red) and the target (blue). The intuition from the low-dimensional
examples does not carry over to higher dimensions: although the importance ratios are still bounded,
even for a lower correlation level, the overlap in typical sets of the target and the approximations gets
worse both for exclusive and inclusive divergences.

been on improving predictive accuracy, the choice of method components becomes even more critical
when the goal is to obtain accurate summaries of the posterior itself.

In this paper, we show that, while the choice of approximating family and divergence is often
motivated by low-dimensional illustrations, the intuition from these examples do not necessarily carry
over to higher-dimensional settings. By drawing a connection between importance sampling and the
estimation of common divergences used in BBVI, we are able to develop a comprehensive framework
for understanding the reliability of BBVI in terms of the pre-asymptotic behavior of the density ratio
between the target and the approximate distribution. When this density ratio is heavy-tailed, even
unbiased estimators exhibit a large bias with high probability, in addition to high variance. Such
heavy tails occur when there is a mismatch between the typical sets of the approximating and target
distributions. In higher dimensions, even over-dispersed distributions miss the typical set of the
target [18, 27]. Thus, as illustrated in Fig. 1, the benefits of heavy-tailed approximate families and
divergences favoring mass-covering diminish as dimensionality of the target distribution increases.
Building on these insights, we make the following main contributions:

1. We develop a conceptual and experimental framework for predicting and empirically evaluating
the reliability of BBVI based on the choice of variational objective, approximating family, and
target distribution. Our framework also incorporates the Pareto k diagnostic [27] as a simple
and practical approach for obtaining empirical and conceptual insights into the pre-asymptotic
convergence rates of estimators of common divergences and their gradients.

2. We validate our framework through an extensive empirical study using simulated data and many
commonly used real datasets with both Gaussian and non-Gaussian target distributions. We
consider the exclusive and inclusive Kullback-Leibler (KL) divergences [4, 21, 24], tail-adaptive
f-divergence [29], x? divergence [7], and a-divergences [12], and the resulting variational
approximation for isotropic Gaussian and Student-¢ and normalising flow families.

3. Based on our framework and numerical results, we provide justified recommendations on design
choices for different scenarios, including low- to moderate-dimensional and high-dimensional
posteriors.



2 Preliminaries and Background

Let p(6,Y) be a joint distribution of a probabilistic model, where § € R? is a vector of model
parameters and Y is the observed data. In Bayesian analysis, the posterior p(f) = p(6 | V) =
p(6,Y)/p(Y) (where p(Y) := [p(0,Y)df) is typically the object of interest, but most posterior
summaries of interest are not accessible because the normalizing integral, in general, is intractable.
Variational inference approximates the exact posterior p(f | Y') using a distribution ¢ € Q from a
family of tractable distributions Q. The best approximation is determined by minimizing a divergence
D(p || ¢), which measures the discrepancy between p and ¢:

«~ =arg min D , 1
ax g min D(p || g) (1

where A € R¥ is a vector parameterizing the variational family Q. Thus, the properties of the
resulting approximation ¢ are determined by the choice of variational family Q as well as the choice
of divergence D.

The family @ is often chosen such that quantities of interest (e.g., moments of ¢) can be computed
efficiently. For example, ¢ can be used to compute Monte Carlo or importance sampling estimates
of the quantities of interest. Let w(f) := p(6,Y)/q(6) denote the density ratio between the joint
and approximate distributions. For a function ¢ : R? — R, the biased self-normalized importance
sampling estimator for the posterior expectation Eg..,[¢(0)] is given by

S

- w(6s)
[(6) =" gl —o(8,),
s=1 Zs/zl w(GS/)
where 61, ...,0s ~ g are independent. Using importance sampling can allow for computation of
more accurate posterior summaries and to go beyond the limitations of the variational family. For
example, it is possible to estimate the posterior covariance even when using a mean-field variational
family.

Pareto Smoothed Importance Sampling. Since importance sampling estimates can have very high
variance, Pareto smoothed importance sampling (PSIS) can be used to substantially reduce the
variance with small additional bias [27]. This procedure modifies and stabilises extreme importance
ratios using a generalized Pareto distribution fit to the upper tail of the distribution of the ratios.

Variational families. Let ¢)(#) be an approximating family parameterised by a K-dimensional
vector A € RX for D-dimensional inputs § € R”. Typical choices of ¢ include mean-field Gaussian
and Student’s ¢ families [3, 14], full and low rank Gaussians [15, 22], mixtures of exponential families
[17, 19], and normalising flows [25]. We focus on the most popular mean-field and normalizing flow

families. Mean-field families assume independence across the D dimensions: ¢(f) = Hfil qi(0,),
where each g; typically belongs to some exponential family or other simple class of distributions.
Normalising flows [1] provide more flexible families that can capture correlation and non-linear
dependencies. A normalizing flow is defined via the transformation of a probability density through
a sequence of invertible mappings. By composing several maps, a simple distribution such as a

mean-field Gaussian can be transformed into a more complex distribution [25].

f-divergences. The most commonly used divergences are examples of f-divergences [28]. For a
convex function f satisfying f(1) = 0, the f-divergence is given by

mmnm:mwp(%%?ﬂ.

The exclusive Kullback-Leibler (KL) divergence corresponds to f(w) = — log(w), the inclusive KL
divergence corresponds to f(w) = w log(w), the x? divergence corresponds to f(w) = (w — 1)2,
and the general a-divergences correspond to (w® — w)/{a(a — 1)}. We also consider the adaptive
f-divergence proposed by Wang et al. [29].

Loss estimation and stochastic optimization. In all the cases we consider, minimizing the f-
divergence is equivalent to minimizing the loss function L¢(p || ¢) = Eg~q[f(w(0))] (although, see
Wan et al. [28] for a different approach). Let L(A) :== L¢(p || ¢») denote the loss as a function of
the variational parameters A. The loss and its gradient G(\) := YV L(X) can both be approximated
using, respectively, the Monte Carlo estimates

L) =537 fw(dy) and GO\ =137 9(6,), )



where 61, ..., 0 are independent draws from gy and g : RX — RX is an appropriate gradient-like
function that depends on f and w. The two most popular gradient estimators in the literature are the
score function and the reparameterization gradient estimator [20, 30]. The score function gradient
corresponds to g(0) = {f(w(#)) — w(0) f'(w(8))}Valoggr(d). It is a general-purpose estimator
that applies to both discrete and continuous distributions ¢, but it is known to suffer from high
variance. When this estimator is used for the mass-covering divergences such as the inclusive KL
and general a-divergences with o > 1, the importance weights are usually replaced with self-

normalized importance weights w(6s)/ Zis:l w(0;). The reparameterization gradient [20] requires
expressing the distribution g, as a deterministic transformation of a simpler base distribution r
such that T (z) ~ ¢, with z ~ r. This allows writing an expectation with respect to g as an
expectation over the simpler distribution r. The reparameterization estimator corresponds to using
9(zs) = Vaf(w(Tx(zs))) (for zs ~ ) in place of g(#), where w implicitly depends on A as well.
In the case of the adaptive f-divergence, the importance weights w(61), ..., w(fg) are sorted, and
the gradients corresponding to each sample are then weighed by the empirical rank. The gradient
estimates can be used in a stochastic gradient optimization scheme such that

AL X G, 3)

where 7, is the step size. In practice, more stable adaptive stochastic gradient optimisation methods
such as RMSProp or Adam [9, 13], which smooth or normalize the noisy gradients, are often used.

Numerous prior work have studied some of the challenges tied to optimizing these divergence
measures under the presence of noisy gradient estimates [1, 10, 29, 31]. Particularly, when dealing
with mass-covering divergences, the gradient estimates can become so noisy that convergence is not
possible in practice, as we will illustrate later on.

3 Assessing the Reliability of Black-box Variational Inference

3.1 Conceptual framework

How can we determine — both conceptually and experimentally — what is required to obtain reliable
estimates of the variational divergence and optimal variational approximation? As we have seen, the
most common variational divergences and their Monte Carlo gradient estimators can be expressed in
terms of the density ratio w(6). Reliable black-box variational inference ultimately depends on the
behavior of w(#) since (1) accurate optimization requires low-variance and (nearly) unbiased gradient

estimates G (), and (2) determining convergence and validating the quality of variational approxima-

tions can require accurate estimates L(\) of variational divergences [14, 15]. While asymptotically
(in the number of iterations and Monte Carlo sample size S) there may be no issues with stochastic
optimization or divergence estimation, in practice black-box variational inference operates in the
pre-asymptotic regime. Therefore, the reliability of black-box variational inference depends on
the pre-asymptotic behavior of the w(6), and how it interacts with the choice of variational
objective and gradient estimator.

Before accounting for the effects of the objective and gradient estimator, first consider the behavior
of the density ratio w(#), which can also be interpreted as an importance sampling weight with
gx(0) as the proposal distribution [cf. 2, 16, 29]. Pickands [23] proved, under commonly satisfied
conditions, that for « tending to infinity, the distribution of w(#) | w(€) > w is well-approximated
by the three-parameter generalized Pareto distribution GPD(u, o, k), which for k£ > 0 has density
p(w | u,0,k) = o1 4+ k(w — u)/o} ' ~V/* where w is restricted to (u,00). Since w(f) > 0,
this implies its distribution is heavily skewed to the right with a power-law tail. Consider the idealized
scenario of estimating the mean of w(f) ~ GPD(u, 0, k). We assume the mean is finite, which is
equivalent to assuming k < 1 since |1/k| determines the number of finite moments. Because of
the heavy right skew, most of the mass of w(6) is below its mean. Therefore, even after averaging a

large number of samples, most empirical estimates Zle w(0s) will be smaller than the true mean.
Figure 3a illustrates this behavior for different values of k: even with 1 million samples, the empirical
mean is far below the true mean when k£ > 0.7. The highly variable sizes of the confidence intervals
based on 10,000 replications further highlight the instability of the estimator. So, even though the
empirical mean is an unbiased estimator, in the pre-asymptotic regime (before the generalized
central limit theorem is applicable [5]), in practice the estimates are heavily biased downward
with high probability. If w(0) is not a generalized Pareto distribution, we can instead treat k as
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Figure 2: The ratio of estimated mean and true mean for different values of & shape parameter of a
generalized Pareto distribution and confidence intervals in a finite sample size simulation.

the tail index k := inf{¢ > 0 : Eg,{w()'/*} < oo}, which encodes the same tail behavior as
GPD(u, 0, k). Crucially, we should expect k to be much larger than O when there is a significant
mismatch between the target distribution and the variational family. Since selecting a variational
family that can match the typical set tends to be more difficult in higher dimensions, we should
expect k to be larger for higher-dimensional posteriors.

We can generalize our observations about pre-asymptotic estimation bias to the estimators E(A)

and G(\). For the loss estimator, we replace w(f,) with f(w(6,)), where f(w) is polynomial in
w and log w for the class of losses we consider. If the dominant term of f(w) is of order w®, the

tail behavior will be similar to a generalized Pareto with k, = ak. Thus, L()) will have larger
pre-asymptotic bias as « increases. For example, estimation of the mass-covering inclusive KL
(where oo = 1) — and, more generally, mass-covering a-divergences with « > 0 — will suffer from a
large pre-asymptotic bias. On the other hand, for the mode-seeking exclusive KL, f(w) = log(w),
so we can expect all moments to be finite and therefore a much smaller pre-asymptotic bias.

Similar considerations apply to the gradient estimator, with the details depending on the specific
estimator used. However, when using self-normalized weights for a-divergences, we can expect a
large pre-asymptotic bias whenever w(6) has such bias since self-normalization involves estimating
the mean of w(6). This bias will affect the accuracy of the solution found using stochastic optimization.
Thus, the quality of the solutions found can only partially be improved by using a smaller step size
since smaller step sizes will only reduce the effects of a large estimator variance, but not the effects
from a large bias. We provide more details on the behavior of the score function and reparameterized
gradients for each of the divergences in ????, following Geffner and Domke [11].

In summary, our framework makes two key predictions:

(P1) Estimates and gradients of mode-seeking divergences (in particular exclusive KL divergence
with log dependence on w) have lower variance and are less biased than those of mass-covering
divergences (in particular a-divergences with o > 0, with polynomial dependence on w).

(P2) The degree of polynomial dependence on w determines how rapidly the bias and variance will
increase as approximation accuracy degrades — in particular, in high dimensions.

Because the adaptive f-divergence depends directly on the (ordered) weights, we expect it to behave
similarly to the mass-covering divergences.

3.2 Experimental framework

In the light of potentially large non-asymptotic bias arising from the heavy right tail of w(6), it is
important to verify the pre-asymptotic behavior of the Monte Carlo estimators used in variational
inference. We follow the approach developed by Vehtari et al. [27] for importance sampling and
compute an empirical estimate k of the tail index k by fitting a generalized Pareto distribution to the
observed tail draws. In the importance sampling setting, Vehtari et al. [27] show that the minimal
sample size to have a small error with high probability scales as S = O(exp{k/(1 — k)?}). Vehtari
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Figure 3: Results for correlated Gaussian targets of dimension D = 1,...,50 using either the

exclusive or inclusive KL divergence as the variational objective. Each line in the plots corresponds
to fitting and evaluating the same divergence measure as indicated in the legend. Each result is the
average of 50 independent simulations. Quantiles are computed from simulating 100, 000 draws. (a)
Bias and variance of the gradients of the optimised f-divergence for one parameter 6 for increasing
dimensions at the end of the optimisation for correlated Gaussian targets of dimension D = 1,...,20
and mean field Gaussian as variational approximation. (b) The ratio of the f-divergence estimate to

the true value. (¢) The k values for the variational approximations.

et al. [27] also demonstrate that k provides a practical pre-asymptotic convergence rate estimate even
when the variance is infinite and a generalized central limit theorem holds. While estimating k in
general requires larger sample size than is commonly used to estimate the stochastic gradients, we
can still use it to diagnose and identify the challenges with different divergences. If k > 0.7, the
minimal sample size to obtain a reliable Monte Carlo estimate is so large that it is usually infeasible
in practice. This cutoff is in agreement with our findings shown in Fig. 3a. Thus, together with our
conceptual framework, we have a third key prediction:

(P3) The k value can be used to diagnose pre-asymptotic reliability of variational objectives. In

particular, the a-divergence with & > 0 will become unreliable when max(1, o) x k> 07,
even if w is bounded (by a very large constant).

3.3 Verification of Pre-asymptotic (Un)reliability

We first verify our three key predictions in a simple setting where we can compute most of the
relevant quantities such as the loss function in closed form. Specifically, we fit a mean-field Gaus-
sian to a Gaussian with constant 0.5 correlation factor using the inclusive KL, exclusive KL, XQ,
and 1/2-divergences. We vary the dimensionality D from 1 to 50, which is a surrogate for the
degree of mismatch between the optimal variational approximation and the target distribution. To
find the optimal divergence-based approximation, we optimize the closed-form expression for the
divergences between two Gaussians. Hence, we can consider on the best-case scenario and ignore
the complexities and uncertainty due to the stochastic optimization. Due to space limitations, we
focus on representative cases of the approximations from optimising the mode-seeking exclusive KL
divergence and the mass-covering inclusive KL divergence. Results for the other divergences are
included in the appendix.

(P1) Mode-seeking divergences are more stable and reliable than mass-covering ones. Figure 3b
shows that as the approximation—target mismatch increases with dimension, the bias in and variance
of the divergence estimates increases substantially for the inclusive KL and x? but only moderately
for the exclusive KL. Similarly, Fig. 2 shows that gradient bias and variance increases with dimension
for inclusive KL and x2 but not exclusive KL.

(P2) Degree of polynomial dependence on w determines sensitivity to approximation—target
mismatch. Figure 3b shows that divergence estimates resulting from optimising higher polynomials
of w become more and more unstable as dimensions increases.
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Figure 4: Results for increasing dimensions of the robust regression model. (a) Pareto k values for
BBVI approximations. (b) Relative error of covariance estimates for BBVI (solid lines) and after
PSIS correction (dashed lines).

P3) k diagnoses pre-asymptotic reliability. Figure 3c shows that the k values grow rapidly for the
inclusive KL-based approximation, particularly for higher-degree dependence on w, which agrees
with predicted behavior and large bias and variance of the inclusive KL and x2. In contrast, the

k values remain fairly stable for the exclusive KL-based approximation, again in agreement with
predicted and observed bias and variance behavior.

4 Experiments

In this section, we describe a series of experiments to study how our pre-asymptotic framework can
be used for assessing the reliability of black-box variational approximations for practical applications
and developing best-practices. For all posteriors, we fit mean-field Gaussian and Student-¢ families, a
planar flow [25] with 6 layers and a non-volume preserving (NVP) flow [8] with 6 stacked neural
networks with 2 hidden layers of 10 neurons each for both the translation and scaling operations with
a standard Gaussian distribution for the latent variables. We use Stan [26] for model construction. For
stochastic optimization we use RMSProp with initial step size of 1072 run for either T,y iterations
or until convergence was detected using a modified version of the algorithm by Dhaka et al. [6]. For
the exclusive KL we use 10 draws for gradient estimation per iteration, while for the other divergences
we use 200 draws, and a warm start at the solution of the exclusive KL. In practice, we found the
optimisation for x? divergence extremely challenging, with the solution failing to converge even for
moderate dimensions D ~ 10. Therefore, we only include results for the KL divergences and the
adaptive f-divergence. We compare the accuracy of approximated posterior moments to ground-truth
computed either analytically or using the dynamic Hamiltonian Monte Carlo algorithm in Stan [26].
Specifically, we consider the estimates /i and S for, respectively, the posterior mean y and covariance

matrix 2. We also consider the mean and covariance estimates produced by PSIS and compute k.
The experiments were carried on a laptop and an internal cluster with only CPU capability. The code
for the experiments will be made available after acceptance using MIT license.

4.1 Heavy-tailed posteriors

First, we study the toy robust regression model previously used by Huggins et al. [14] given by

6(1 ~ N(Oa 10)a Yn | x’ruﬁ ~ tlo(ﬁT.’I}n, 1)7
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Figure 5: Maximum dimensionality converged per step size for the robust regression model.

where y,, € R, 2,, € RP are the target and predictors respectively, 3 denotes the unknown coefficients,
and D is varied from 2 to 50. We generated data from the same model with covariates generated from
a zero-mean Gaussian with constant correlation of 0.4. The Student’s ¢ leads to the posterior having
heavy tails, making it a more challenging target distribution. We use 71, = 10,000.

Mode-seeking divergences are easier to optimize. Figure 4a shows that the estimated tail index k

generally increases with the dimension as expected. In particular, the k values when using normalizing
flows, which are more challenging to optimize, is low for D < 20 when using exclusive KL, but
infinite when using either the inclusive KL or f-divergence. From Fig. 4b we can see that exclusive
KL provides also more accurate and reliable posterior approximations than the inclusive KL and
adaptive f-divergence, particularly for the normalizing flows. This observation is consistent with
the prediction (P3) of the proposed framework. The better performance for normalizing flows
corroborates the relative ease of stochastic optimization with the exclusive KL divergence compared
to the inclusive KL or the adaptive f-divergence — despite the fact that we used 20 times as many
Monte Carlo samples to estimate the gradients for the inclusive KL and the f-divergence compared to
the exclusive KL. To further illustrate the relative difficulty of optimizing the inclusive KL divergence,
Fig. 5 shows the largest dimension for which the stochastic optimization converged as a function
of the step-size. For most step-sizes, the combination of normalizing flows and the inclusive KL
divergence only converged for D = 2, whereas convergence is possible in higher dimensions for
simpler variational families. These observations are consistent with predictions (P1)-(P2) of the
proposed framework.

Adaptive f-divergence interpolates between the exclusive and inclusive KL divergence, but is
difficult to optimize. In low dimensions, the adaptive f-divergence behaves somewhere between
the two KL divergences as seen in ?? — as it was designed to [29]. As confirmed by Fig. 4, For
higher-dimensional posteriors, we expect it to behave more like the exclusive KL, but it is less stable
due to its functional dependence on the importance weights.

Normalizing flows can be effective but are challenging to optimize. Fig. 4 also shows that nor-
malizing flows can be quite effective when used with exclusive KL to ensure stable optimization.
However, as can be seen in ??, when using out-of-the-box optimization with no problem-specific
tuning (as we have done for a fair comparison), the normalizing flows approximations can have
pathological features — even in low dimensions.

4.2 Realistic models and datasets

We now study how the choice of divergence and approximating family compare across a diverse
range of benchmark posteriors. We compare variational approximations for models and datasets from
posteriordb  in terms of accuracy of the estimated moments and predictive likelihood. We used an
80/20 training/test split on all datasets to compute the predictive likelihoods. We use 11, = 15,000.

: https://github.com/stan-dev/posteriordb
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Figure 6: Results for posteriordb experiments. Dimensionality of each dataset is given in paren-

theses. (a) Pareto k values for BBVI approximations. (b) Relative error of mean and covariance
estimates for BBVI using exclusive KL (circles) and after PSIS correction (triangles).

Table 1: Predictive likelihood results on posteriordb datasets using a Mean Field Gaussian
approximation. The results denote the likelihood with the variational approximation solution obtained
and after PSIS correction to the solution. Bold (underline) indicates best-performing method(s)
(variational method(s))

Name HMC Excl. KL Excl. KL+PSIS Incl. KL Incl. KL+PSIS
dogs -71.14+1.2 712 +1.3 -71.7+1.5 -11043.5 -70.54+4.1
arK -32.440.6 -34.3+0.7 -34.440.7 -35.240.8 -34.940.8

mesquite  -1681+127  -25124+140 -5418+186 -00 -00

nesl996  -412.9+1.7 -412.8+1.7 -4279+1.8 -2140.54+59.7 -499.3+45.6

diamonds  22.1+3.1 -2.6+1.3 1.5+1.2 -3196.6+57.9 -3149455.7
radon -2344+1.1 -353.0+£19.3 -325.0+19.5 -377.4+1.9 -370.5+2.2

Exclusive KL. remains the most reliable for realistic posteriors. The results are summarized
in Fig. 6, where the same pattern is seen: the exclusive KL is superior for higher-dimensional
posteriors (e.g., D > 10) or when combined with normalizing flows, while inclusive KL is better for
lower-dimensional posteriors. Despite the superior performance of the exclusive KL divergence, the
large values for k indicate that fitting approximations based on normalizing flows remains a challenge
in high dimensions. The performance for the adaptive f-divergence is comparable to the inclusive KL
divergence. Table 1 shows that the exclusive KL divergence consistently outperforms the inclusive
KL divergence in terms of predictive accuracy, but can be significantly worse than HMC.

Importance sampling can substantially improve accuracy. Focusing on exclusive KL, Fig. 6b
shows the relative errors of the first two moments for the variational approximation (dots) and after
correcting the estimates using PSIS (triangles). In some cases, the PSIS correction dramatically
improved the accuracy of the normalizing flows.

Reparameterization is an important tool for improving accuracy. The 8-schools model is low-
dimensional (D = 10), but the funnel-shaped posterior makes inference challenging for variational
approximations [14, 31]. As has been noted previously in the literature, and is clear from Figs. 6a
and 6b, reparameterizing the model so that the posterior better matches the variational family can be
an effective way to improve the accuracy of the approximation. See ?? for an illustration.



5 Discussion

Our conceptual framework based on the pre-asymptotic behavior of the density ratios / importance
weights w along with our comprehensive experiments lead to a number of important takeaways
for practitioners looking to obtain reasonably accurate posterior approximations using black-box
variational inference:

e The instability of mass-covering divergences like inclusive KL and x? means that, given currently
available methodology, users are better off using the exclusive KL divergence except for easy
low-dimensional posteriors. The reliance of the adaptive f-divergence on importance weights
leads to similar instability.

° Importance sampling appears to almost always be beneficial for improving accuracy, even when

the k diagnostic is large. However, a large k does suggest the user should not expect even the
PSIS-corrected estimates to be particularly accurate.

o Using normalizing flows — particularly NVP flows — together with exclusive KL and PSIS provides
the best and most consistent performance across posteriors of varying dimensionality and difficulty.
We therefore suggest this combination as a good default choice.

Our results suggest an important direction for future work is improving the stability of optimization
with normalizing flows, which still tend to have some pathological behaviors unless they are very
carefully tuned since such tuning significantly detracts from the benefits of using BBVIL.

6 Limitations

While our experiments included a range of common statistical model types, our findings may not
generalize to all types of posteriors or to other variational families. For example, we did not explore
semi-implicit methods or applications to neural networks. We also did not investigate alternative
divergences such as those used in importance-weighted autoencoders.
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